Early Prognostication of Critical Patients With Spinal Cord Injury

医学 分类器(UML) 人工智能 机器学习 曲线下面积 重症监护 重症监护室 内科学 计算机科学 重症监护医学
作者
Guoxin Fan,Huaqing Liu,Sheng Yang,Libo Luo,Mao Pang,Bin Liu,Liangming Zhang,Lanqing Han,Limin Rong,Xiang Liao
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:49 (11): 754-762 被引量:2
标识
DOI:10.1097/brs.0000000000004861
摘要

Study Design. A retrospective case-series. Objective. The study aims to use machine learning to predict the discharge destination of spinal cord injury (SCI) patients in the intensive care unit. Summary of Background Data. Prognostication following SCI is vital, especially for critical patients who need intensive care. Patients and Methods. Clinical data of patients diagnosed with SCI were extracted from a publicly available intensive care unit database. The first recorded data of the included patients were used to develop a total of 98 machine learning classifiers, seeking to predict discharge destination (eg, death, further medical care, home, etc.). The microaverage area under the curve (AUC) was the main indicator to assess discrimination. The best average-AUC classifier and the best death-sensitivity classifier were integrated into an ensemble classifier. The discrimination of the ensemble classifier was compared with top death-sensitivity classifiers and top average-AUC classifiers. In addition, prediction consistency and clinical utility were also assessed. Results. A total of 1485 SCI patients were included. The ensemble classifier had a microaverage AUC of 0.851, which was only slightly inferior to the best average-AUC classifier ( P =0.10). The best average-AUC classifier death sensitivity was much lower than that of the ensemble classifier. The ensemble classifier had a death sensitivity of 0.452, which was inferior to the top 8 death-sensitivity classifiers, whose microaverage AUC were inferior to the ensemble classifier ( P <0.05). In addition, the ensemble classifier demonstrated a comparable Brier score and superior net benefit in the DCA when compared with the performance of the origin classifiers. Conclusions. The ensemble classifier shows an overall superior performance in predicting discharge destination, considering discrimination ability, prediction consistency, and clinical utility. This classifier system may aid in the clinical management of critical SCI patients in the early phase following injury. Level of Evidence: Level 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助使用过有几个采纳,获得10
2秒前
2秒前
科研通AI5应助叻居居采纳,获得30
4秒前
4秒前
4秒前
4秒前
无私期待完成签到,获得积分10
5秒前
chenu发布了新的文献求助10
5秒前
6秒前
刀刀发布了新的文献求助10
7秒前
7秒前
saisyo完成签到,获得积分10
10秒前
11秒前
司空豁发布了新的文献求助10
11秒前
科研通AI5应助shasha采纳,获得10
11秒前
splaker7完成签到,获得积分10
11秒前
英俊的铭应助虚心的芷蝶采纳,获得10
12秒前
yzm发布了新的文献求助10
13秒前
Rain发布了新的文献求助10
15秒前
may发布了新的文献求助10
16秒前
13313完成签到,获得积分10
17秒前
科研通AI5应助朴素采文采纳,获得10
18秒前
wanci应助Rain采纳,获得10
20秒前
23秒前
YJ发布了新的文献求助10
27秒前
27秒前
丘比特应助may采纳,获得10
28秒前
英俊的铭应助linlang采纳,获得10
28秒前
29秒前
31秒前
大模型应助无私期待采纳,获得10
32秒前
一天发布了新的文献求助10
34秒前
搜集达人应助顺其自然采纳,获得10
35秒前
黑焦糖完成签到,获得积分10
35秒前
38秒前
38秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
38秒前
残幻应助科研通管家采纳,获得10
38秒前
科目三应助科研通管家采纳,获得30
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066