亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning ensemble approach for predicting growth of abalone reared in land-based aquaculture in Hokkaido, Japan

鲍鱼 水产养殖 渔业 机器学习 生态学 环境科学 生物 计算机科学
作者
Nguyen Minh Khiem,Yuki Takahashi,Tomohiro Masumura,GENKI KOTAKE,Hiroki Yasuma,Nobuo KIMURA
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:103: 102372-102372 被引量:5
标识
DOI:10.1016/j.aquaeng.2023.102372
摘要

Land-based aquaculture is an ideal aquaculture solution for creating high-quality seafoods and providing optimal conditions for maximizing growth of seafood production because environmental factors are well controlled. Predicting the growth of indoor-cultured abalone is meaningful because it facilitates evaluation of the effectiveness of this type of farming and understanding of the effects of controllable environmental factors on abalone growth. In this study, such predictions were made using an ensemble of machine learning algorithms: the random forest, gradient boosting, support vector machine, and neural network algorithms. Data were collected in the town of Fukushima, Hokkaido, Japan, and the increase in the weight of abalone was hypothesized from independent variables, including air and water temperature, loss of individuals caused by mortality or emigration, flow speed, age, and growth period between two measurements. The results showed that the ensemble method predicts growth well, with a low mean absolute error and mean square error. Temperature adjustment can make a strong contribution to increasing the weight of abalone, where a stable and warm temperature enhances growth. Moreover, the age of abalone is closely related to growth. Abalone size increased strongly in the early stages but decreased slightly once near market size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
花生完成签到,获得积分10
32秒前
40秒前
花生发布了新的文献求助20
44秒前
46秒前
gexzygg应助科研通管家采纳,获得10
54秒前
gexzygg应助科研通管家采纳,获得10
54秒前
田様应助科研通管家采纳,获得10
54秒前
54秒前
量子星尘发布了新的文献求助10
1分钟前
杨迪完成签到,获得积分20
1分钟前
1分钟前
贪玩鸵鸟完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助kmzzy采纳,获得10
2分钟前
2分钟前
2分钟前
Soledad发布了新的文献求助10
2分钟前
Soledad完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
大鲁完成签到,获得积分10
3分钟前
哈哈哈哈哈关注了科研通微信公众号
4分钟前
4分钟前
kmzzy发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助30
6分钟前
慕青应助科研通管家采纳,获得10
6分钟前
6分钟前
7分钟前
8分钟前
量子星尘发布了新的文献求助50
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270055
求助须知:如何正确求助?哪些是违规求助? 3800578
关于积分的说明 11910766
捐赠科研通 3447508
什么是DOI,文献DOI怎么找? 1890969
邀请新用户注册赠送积分活动 941722
科研通“疑难数据库(出版商)”最低求助积分说明 845807