K-Means Clustering with Local Distance Privacy

聚类分析 差别隐私 计算机科学 数据挖掘 服务(商务) 空格(标点符号) 人工智能 经济 经济 操作系统
作者
Mengmeng Yang,Longxia Huang,Chenghua Tang
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:6 (4): 433-442 被引量:4
标识
DOI:10.26599/bdma.2022.9020050
摘要

With the development of information technology, a mass of data are generated every day. Collecting and analysing these data help service providers improve their services and gain an advantage in the fierce market competition. K-means clustering has been widely used for cluster analysis in real life. However, these analyses are based on users' data, which disclose users' privacy. Local differential privacy has attracted lots of attention recently due to its strong privacy guarantee and has been applied for clustering analysis. However, existing $K$ -means clustering methods with local differential privacy protection cannot get an ideal clustering result due to the large amount of noise introduced to the whole dataset to ensure the privacy guarantee. To solve this problem, we propose a novel method that provides local distance privacy for users who participate in the clustering analysis. Instead of making the users' records in-distinguish from each other in high-dimensional space, we map the user's record into a one-dimensional distance space and make the records in such a distance space not be distinguished from each other. To be specific, we generate a noisy distance first and then synthesize the high-dimensional data record. We propose a Bounded Laplace Method (BLM) and a Cluster Indistinguishable Method (CIM) to sample such a noisy distance, which satisfies the local differential privacy guarantee and local d E -privacy guarantee, respectively. Furthermore, we introduce a way to generate synthetic data records in high-dimensional space. Our experimental evaluation results show that our methods outperform the traditional methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助活力的双双采纳,获得10
2秒前
2秒前
非也非也6完成签到,获得积分10
2秒前
Ling完成签到,获得积分10
3秒前
Lina完成签到,获得积分10
3秒前
十九集发布了新的文献求助10
3秒前
NexusExplorer应助zxer采纳,获得10
4秒前
果子完成签到,获得积分20
5秒前
5秒前
友好凡霜发布了新的文献求助10
6秒前
6秒前
寒冷乐驹发布了新的文献求助10
7秒前
所所应助TYolo采纳,获得10
8秒前
房雍发布了新的文献求助30
11秒前
CC完成签到,获得积分10
11秒前
lululu0212完成签到,获得积分10
12秒前
胡霖完成签到,获得积分10
13秒前
传奇3应助平淡茈采纳,获得10
13秒前
15秒前
CipherSage应助qianyuan采纳,获得30
17秒前
fourfor完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
阡陌完成签到,获得积分10
20秒前
baibai完成签到,获得积分10
21秒前
阳光飞槐发布了新的文献求助10
22秒前
44发布了新的文献求助30
22秒前
ED应助zyshao采纳,获得10
23秒前
科研通AI5应助Olivia采纳,获得10
24秒前
房雍完成签到,获得积分10
25秒前
29秒前
30秒前
31秒前
32秒前
受伤勒完成签到,获得积分20
32秒前
心心完成签到,获得积分10
34秒前
耗尽完成签到,获得积分10
34秒前
情怀应助阳光飞槐采纳,获得10
34秒前
徐佳达完成签到,获得积分10
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214