清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MPFFNet: LULC classification model for high-resolution remote sensing images with multi-path feature fusion

计算机科学 人工智能 卷积神经网络 特征(语言学) 模式识别(心理学) 土地覆盖 遥感 分割 上下文图像分类 数据挖掘 土地利用 地理 图像(数学) 哲学 语言学 土木工程 工程类
作者
Hao Yuan,Zhihua Zhang,Xing Rong,Dongdong Feng,Shaobin Zhang,Shuwen Yang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (19): 6089-6116 被引量:11
标识
DOI:10.1080/01431161.2023.2261153
摘要

ABSTRACTLand Use/Land Cover (LULC) classification has become increasingly important in various fields, including ecological and environmental protection, urban planning, and geological disaster monitoring. With the development of high-resolution remote sensing satellite technology, there is a growing focus on achieving precise LULC classification. However, the accuracy of fine-grained LULC classification is challenged by the high intra-class diversity and low inter-class separability inherent in high-resolution remote sensing images. To address this challenge, this paper proposes a novel multi-path feature fusion semantic segmentation model, called MPFFNet, which combines the segmentation results of convolutional neural networks with traditional filtering processes to achieve finer LULC classification. MPFFNet consists of three modules: the Improved Encoder Module (IEM) extracts contextual and spatial detail information through the backbone network, DASPP, and MFEAM; the Improved Decoder Module (IDM) utilizes the Cascade Feature Fusion (CFF) module to effectively merge shallow and deep information; and the Feature Fusion Module (FAM) enables dual-path feature fusion using a convolutional neural network and Gabor Filter. Experimental results on the large-scale classification set and the fine land-cover classification set of the Gaofen Image Dataset (GID) demonstrate the effectiveness of the proposed method, achieving mIoU scores of 81.02% and 77.83%, respectively. These scores outperform U-Net by 7.95% and 3.28%, respectively. Therefore, we believe that our model can deliver superior results in the task of LULC classification.KEYWORDS: Semantic segmentationland use/land coverhigh-resolution remote sensing imagesmulti-path feature fusion AcknowledgementsThe authors are grateful to the editors and reviewers for their valuable suggestions.Disclosure statementNo potential conflict of interest was reported by the author(s).Data Availability statementThe publicly available dataset Gaofen Image Datasets can be found here: https://paperswithcode.com/dataset/gid.Additional informationFundingThis study was funded by National Key R&D Program of China [2022YFB3903604]. The Central Government to Guide Local Scientific and Technological Development [22ZY1QA005]. The National Natural Science Foundation of China [41930101, 41861059, 42161069], Natural Science Foundation of Gansu Province (23JRRA870), and was partially supported by LZJTU EP 201806, Key R&D Project of Gansu Province [21YF11GA008] and Project of Gansu Provincial Department of Transportation [2021-31].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wesz9887发布了新的文献求助10
6秒前
V_I_G完成签到 ,获得积分10
8秒前
25秒前
universe_hhy发布了新的文献求助10
30秒前
32秒前
wesz9887完成签到,获得积分10
37秒前
刘刘完成签到 ,获得积分10
38秒前
universe_hhy完成签到,获得积分10
39秒前
Frank完成签到 ,获得积分10
42秒前
haiwei完成签到 ,获得积分10
56秒前
小鱼女侠完成签到 ,获得积分10
1分钟前
吉祥高趙完成签到 ,获得积分10
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
white完成签到,获得积分10
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Vintoe完成签到 ,获得积分10
1分钟前
lsl发布了新的文献求助10
1分钟前
SciGPT应助lsl采纳,获得10
1分钟前
Zhahu完成签到 ,获得积分10
2分钟前
薛家泰完成签到 ,获得积分10
3分钟前
麦旋风完成签到,获得积分10
3分钟前
3分钟前
保尔china发布了新的文献求助10
3分钟前
顾矜应助CRUSADER采纳,获得30
3分钟前
共享精神应助保尔china采纳,获得10
3分钟前
合不着完成签到 ,获得积分10
3分钟前
懒得起名字完成签到 ,获得积分10
4分钟前
4分钟前
CRUSADER发布了新的文献求助30
4分钟前
strzeng完成签到,获得积分10
4分钟前
小燕子完成签到 ,获得积分10
4分钟前
CRUSADER完成签到,获得积分10
4分钟前
maggiexjl完成签到,获得积分10
4分钟前
花花糖果完成签到 ,获得积分10
5分钟前
5分钟前
Beth完成签到,获得积分10
5分钟前
保尔china发布了新的文献求助10
5分钟前
保尔china完成签到,获得积分10
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335978
求助须知:如何正确求助?哪些是违规求助? 4473602
关于积分的说明 13921828
捐赠科研通 4368027
什么是DOI,文献DOI怎么找? 2399998
邀请新用户注册赠送积分活动 1393047
关于科研通互助平台的介绍 1364528