Multimodal Deep Learning for Integrating Chest Radiographs and Clinical Parameters: A Case for Transformers

医学 射线照相术 接收机工作特性 模态(人机交互) 重症监护室 医学影像学 放射科 重症监护 核医学 人工智能 内科学 重症监护医学 计算机科学
作者
Firas Khader,Gustav Müller‐Franzes,T. S. Wang,Tianyu Han,Soroosh Tayebi Arasteh,Christoph Haarburger,Johannes Stegmaier,Keno K. Bressem,Christiane Kühl,Sven Nebelung,Jakob Nikolas Kather,Daniel Truhn
出处
期刊:Radiology [Radiological Society of North America]
卷期号:309 (1) 被引量:32
标识
DOI:10.1148/radiol.230806
摘要

Background Clinicians consider both imaging and nonimaging data when diagnosing diseases; however, current machine learning approaches primarily consider data from a single modality. Purpose To develop a neural network architecture capable of integrating multimodal patient data and compare its performance to models incorporating a single modality for diagnosing up to 25 pathologic conditions. Materials and Methods In this retrospective study, imaging and nonimaging patient data were extracted from the Medical Information Mart for Intensive Care (MIMIC) database and an internal database comprised of chest radiographs and clinical parameters inpatients in the intensive care unit (ICU) (January 2008 to December 2020). The MIMIC and internal data sets were each split into training (n = 33 893, n = 28 809), validation (n = 740, n = 7203), and test (n = 1909, n = 9004) sets. A novel transformer-based neural network architecture was trained to diagnose up to 25 conditions using nonimaging data alone, imaging data alone, or multimodal data. Diagnostic performance was assessed using area under the receiver operating characteristic curve (AUC) analysis. Results The MIMIC and internal data sets included 36 542 patients (mean age, 63 years ± 17 [SD]; 20 567 male patients) and 45 016 patients (mean age, 66 years ± 16; 27 577 male patients), respectively. The multimodal model showed improved diagnostic performance for all pathologic conditions. For the MIMIC data set, the mean AUC was 0.77 (95% CI: 0.77, 0.78) when both chest radiographs and clinical parameters were used, compared with 0.70 (95% CI: 0.69, 0.71; P < .001) for only chest radiographs and 0.72 (95% CI: 0.72, 0.73; P < .001) for only clinical parameters. These findings were confirmed on the internal data set. Conclusion A model trained on imaging and nonimaging data outperformed models trained on only one type of data for diagnosing multiple diseases in patients in an ICU setting. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kitamura and Topol in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Accept完成签到,获得积分20
刚刚
1秒前
西瓜完成签到 ,获得积分10
1秒前
杭ge完成签到,获得积分10
1秒前
严采波发布了新的文献求助10
2秒前
lf-leo发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
今后应助小麻采纳,获得10
3秒前
3139813319完成签到,获得积分10
4秒前
4秒前
科研通AI5应助忐忑的馒头采纳,获得10
4秒前
现代山雁完成签到 ,获得积分10
5秒前
万能图书馆应助SAY采纳,获得10
5秒前
5秒前
123发布了新的文献求助10
6秒前
兰兰完成签到,获得积分10
6秒前
6秒前
lynn完成签到,获得积分20
7秒前
Ma_J发布了新的文献求助30
7秒前
聪明静柏完成签到 ,获得积分10
8秒前
8秒前
8秒前
大白完成签到,获得积分20
9秒前
冬青完成签到,获得积分10
10秒前
平平无奇完成签到,获得积分10
10秒前
10秒前
11秒前
yzy发布了新的文献求助30
11秒前
12秒前
12秒前
贪玩的苠发布了新的文献求助10
12秒前
12秒前
魏佳阁发布了新的文献求助10
14秒前
14秒前
Amanda发布了新的文献求助10
14秒前
Ww发布了新的文献求助10
15秒前
ww完成签到,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4225045
求助须知:如何正确求助?哪些是违规求助? 3758372
关于积分的说明 11813861
捐赠科研通 3419985
什么是DOI,文献DOI怎么找? 1876999
邀请新用户注册赠送积分活动 930417
科研通“疑难数据库(出版商)”最低求助积分说明 838582