A deep transfer learning network for structural condition identification with limited real-world training data

鉴定(生物学) 学习迁移 计算机科学 人工智能 过程(计算) 深度学习 领域(数学分析) 卷积神经网络 机器学习 状态监测 数据挖掘 模式识别(心理学) 工程类 数学 生物 操作系统 电气工程 数学分析 植物
作者
Nengxin Bao,Tong Zhang,Ruizhi Huang,S. Biswal,Jingyong Su,Ying Wang
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2307.15249
摘要

Structural condition identification based on monitoring data is important for automatic civil infrastructure asset management. Nevertheless, the monitoring data is almost always insufficient, because the real-time monitoring data of a structure only reflects a limited number of structural conditions, while the number of possible structural conditions is infinite. With insufficient monitoring data, the identification performance may significantly degrade. This study aims to tackle this challenge by proposing a deep transfer learning (TL) approach for structural condition identification. It effectively integrates physics-based and data-driven methods, by generating various training data based on the calibrated finite element (FE) model, pretraining a deep learning (DL) network, and transferring its embedded knowledge to the real monitoring/testing domain. Its performance is demonstrated in a challenging case, vibration-based condition identification of steel frame structures with bolted connection damage. The results show that even though the training data are from a different domain and with different types of labels, intrinsic physics can be learned through the pretraining process, and the TL results can be clearly improved, with the identification accuracy increasing from 81.8% to 89.1%. The comparative studies show that SHMnet with three convolutional layers stands out as the pretraining DL architecture, with 21.8% and 25.5% higher identification accuracy values over the other two networks, VGGnet-16 and ResNet-18. The findings of this study advance the potential application of the proposed approach towards expert-level condition identification based on limited real-world training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一方完成签到 ,获得积分10
刚刚
4秒前
bkagyin应助小熊采纳,获得10
4秒前
科研通AI5应助哈哈哈eric采纳,获得10
5秒前
5秒前
7秒前
北极熊关注了科研通微信公众号
7秒前
CodeCraft应助Focus_BG采纳,获得10
7秒前
橘子屿布丁完成签到,获得积分10
8秒前
9秒前
9秒前
11秒前
元谷雪发布了新的文献求助10
11秒前
13秒前
爆米花应助lhr采纳,获得10
13秒前
paggyfight发布了新的文献求助10
14秒前
14秒前
louyu完成签到 ,获得积分10
15秒前
Focus_BG发布了新的文献求助10
19秒前
20秒前
TTK完成签到,获得积分10
20秒前
21秒前
21秒前
YCI发布了新的文献求助10
24秒前
25秒前
阿树发布了新的文献求助10
26秒前
27秒前
传奇3应助可乐加冰采纳,获得10
27秒前
毒翼完成签到,获得积分10
30秒前
31秒前
mo发布了新的文献求助10
31秒前
顾矜应助阿树采纳,获得10
31秒前
32秒前
32秒前
32秒前
lzf发布了新的文献求助10
32秒前
Phi.Wang发布了新的文献求助10
32秒前
Lizhenxiang完成签到,获得积分10
33秒前
专一的凛完成签到 ,获得积分10
33秒前
33秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
Enhance the effectiveness of affiliate marketing on Tiktok for young people 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831479
求助须知:如何正确求助?哪些是违规求助? 3373689
关于积分的说明 10481025
捐赠科研通 3093675
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307