Learning how to detect: A deep reinforcement learning method for whole-slide melanoma histopathology images

计算机科学 人工智能 推论 强化学习 数字化病理学 医学诊断 机器学习 深度学习 过程(计算) 构造(python库) 领域(数学) 模式识别(心理学) 病理 医学 纯数学 程序设计语言 操作系统 数学
作者
Tingting Zheng,Weixing Chen,Shuqin Li,Hao Quan,Mingchen Zou,Song Zheng,Yue Zhao,Xing‐Hua Gao,Xiaoyu Cui
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:108: 102275-102275 被引量:6
标识
DOI:10.1016/j.compmedimag.2023.102275
摘要

Cutaneous melanoma represents one of the most life-threatening malignancies. Histopathological image analysis serves as a vital tool for early melanoma detection. Deep neural network (DNN) models are frequently employed to aid pathologists in enhancing the efficiency and accuracy of diagnoses. However, due to the paucity of well-annotated, high-resolution, whole-slide histopathology image (WSI) datasets, WSIs are typically fragmented into numerous patches during the model training and testing stages. This process disregards the inherent interconnectedness among patches, potentially impeding the models' performance. Additionally, the presence of excess, non-contributing patches extends processing times and introduces substantial computational burdens. To mitigate these issues, we draw inspiration from the clinical decision-making processes of dermatopathologists to propose an innovative, weakly supervised deep reinforcement learning framework, titled Fast medical decision-making in melanoma histopathology images (FastMDP-RL). This framework expedites model inference by reducing the number of irrelevant patches identified within WSIs. FastMDP-RL integrates two DNN-based agents: the search agent (SeAgent) and the decision agent (DeAgent). The SeAgent initiates actions, steered by the image features observed in the current viewing field at various magnifications. Simultaneously, the DeAgent provides labeling probabilities for each patch. We utilize multi-instance learning (MIL) to construct a teacher-guided model (MILTG), serving a dual purpose: rewarding the SeAgent and guiding the DeAgent. Our evaluations were conducted using two melanoma datasets: the publicly accessible TCIA-CM dataset and the proprietary MELSC dataset. Our experimental findings affirm FastMDP-RL's ability to expedite inference and accurately predict WSIs, even in the absence of pixel-level annotations. Moreover, our research investigates the WSI-based interactive environment, encompassing the design of agents, state and reward functions, and feature extractors suitable for melanoma tissue images. This investigation offers valuable insights and references for researchers engaged in related studies. The code is available at: https://github.com/titizheng/FastMDP-RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wss123456发布了新的文献求助10
刚刚
wss123456完成签到,获得积分20
8秒前
16秒前
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得50
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
Steven发布了新的文献求助10
21秒前
24秒前
24秒前
乐乐应助阔达衬衫采纳,获得10
26秒前
28秒前
小高同学发布了新的文献求助10
28秒前
昏睡的蟠桃给TrinhTran2001的求助进行了留言
28秒前
科研小民工应助黄小北采纳,获得200
29秒前
CodeCraft应助dff采纳,获得10
32秒前
温暖书文应助nemo采纳,获得10
35秒前
踏实采波完成签到,获得积分10
35秒前
锦秋发布了新的文献求助30
35秒前
dff完成签到,获得积分10
38秒前
谷安完成签到,获得积分10
40秒前
Friday发布了新的文献求助10
40秒前
Owen应助Li采纳,获得10
41秒前
42秒前
hanliulaixi发布了新的文献求助10
42秒前
bkagyin应助小高同学采纳,获得10
46秒前
无奈鞯完成签到,获得积分20
47秒前
bkagyin应助清茶韵心采纳,获得10
48秒前
Friday完成签到,获得积分20
48秒前
pluto应助科研小破白菜采纳,获得20
52秒前
北方完成签到,获得积分10
52秒前
52秒前
53秒前
轻松凝梦发布了新的文献求助10
55秒前
默默雨竹发布了新的文献求助10
56秒前
科研通AI2S应助kukudou2采纳,获得10
59秒前
大模型应助默默小鸽子采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385