亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review

计算机科学 质量(理念) 人工智能 机器学习 物理 量子力学
作者
Rong Ding,Lianhui Yu,Chenghui Wang,Shihong Zhong,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:54 (7): 2618-2635 被引量:31
标识
DOI:10.1080/10408347.2023.2189477
摘要

The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crx完成签到 ,获得积分20
6秒前
科研通AI2S应助牛奶起司猫采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
小药丸完成签到 ,获得积分10
21秒前
31秒前
赘婿应助世界需要我采纳,获得10
58秒前
1分钟前
圈哥完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
supreme发布了新的文献求助10
1分钟前
老鼠耗子发布了新的文献求助30
1分钟前
脑洞疼应助supreme采纳,获得10
1分钟前
慕慕完成签到 ,获得积分10
1分钟前
叫锅盔的猫完成签到 ,获得积分10
1分钟前
1分钟前
Edibletrio发布了新的文献求助10
1分钟前
Mufreh发布了新的文献求助58
1分钟前
1分钟前
1分钟前
1分钟前
Adc应助Res_M采纳,获得10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
1分钟前
盈盈发布了新的文献求助10
1分钟前
希望天下0贩的0应助盈盈采纳,获得10
2分钟前
Adc应助世界需要我采纳,获得10
2分钟前
2分钟前
Nichols完成签到,获得积分10
2分钟前
2分钟前
2分钟前
eclo完成签到 ,获得积分10
2分钟前
兔子精完成签到,获得积分10
2分钟前
盈盈完成签到,获得积分10
2分钟前
迅速服饰完成签到,获得积分10
2分钟前
2分钟前
SSS发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714386
求助须知:如何正确求助?哪些是违规求助? 5223310
关于积分的说明 15273201
捐赠科研通 4865802
什么是DOI,文献DOI怎么找? 2612406
邀请新用户注册赠送积分活动 1562493
关于科研通互助平台的介绍 1519755