A Novel Nontargeted Screening Strategy for New Psychoactive Substances: A Case Study of Synthetic Cannabinoids Based on Electron-Activated Dissociation High-Resolution Mass Spectrometry and Intelligent Elucidation

化学 合成大麻素 质谱法 离解(化学) 设计药物 高分辨率 大麻素 色谱法 药品 药理学 有机化学 受体 生物化学 医学 遥感 地质学
作者
Yu Huang,Yu Du,Zhendong Hua,Cuimei Liu,Wei Jia,Bin Di,Mengxiang Su
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.analchem.5c01936
摘要

Nontargeted screening of new psychoactive substances (NPSs) has always been a challenging task, typically involving data acquisition, the extraction of suspicious peaks, and mass spectrometry elucidation in the screening process. The ongoing advancement of instrument acquisition technology and data analysis methods has resulted in an increasing amount of sample data requiring manual elucidation, significantly reducing the efficiency of forensic identification work and leading to issues such as missed detections and false positives. This study proposed a novel nontargeted screening strategy that is capable of automatically elucidating the NPS classes and chemical structures of unknown designer drugs. For practical use, we applied electron-activated dissociation (EAD) technology to analyze 181 synthetic cannabinoids (SCs) and developed novel mass spectrometry intelligent elucidation (MSIE) software to achieve the nontargeted screening of NPSs and automated structural elucidation of SCs. MSIE software comprises an NPS nontargeted screening model, an SC subclass classification model, and a mass spectrometry intelligent elucidation algorithm. The NPS nontargeted screening model was trained on CID data from 505 NPSs, achieving the classification of 8 NPS classes, with the highest F1 score reaching 93.3%. The SC subclass classification model was trained on EAD data from 181 SCs, achieving the classification of 7 SC parent structures, with the highest F1 score reaching 95.3%. The mass spectrometry intelligent elucidation algorithm includes functionalities such as candidate chemical structure generation, spectral prediction, candidate structure scoring, and fragment ion peak matching, all without any manual intervention throughout the entire process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onevip完成签到,获得积分0
1秒前
丰富的慕卉完成签到,获得积分10
2秒前
木木杉完成签到 ,获得积分10
3秒前
酷波er应助科研通管家采纳,获得20
3秒前
传奇3应助科研通管家采纳,获得150
3秒前
3秒前
龚问萍完成签到 ,获得积分10
7秒前
7秒前
CyberHamster完成签到,获得积分10
10秒前
11秒前
柳叶坚刀完成签到,获得积分10
11秒前
benben完成签到 ,获得积分10
12秒前
15秒前
不要慌完成签到 ,获得积分10
17秒前
忧伤的绍辉完成签到 ,获得积分10
17秒前
leo完成签到,获得积分10
18秒前
hlq完成签到 ,获得积分10
22秒前
Lyw完成签到 ,获得积分10
26秒前
徐梦曦完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
隐形的烧鹅完成签到,获得积分20
31秒前
香蕉觅云应助leo采纳,获得10
34秒前
hhh发布了新的文献求助20
36秒前
chentong0完成签到 ,获得积分10
36秒前
韧迹完成签到 ,获得积分0
37秒前
烟花应助隐形的烧鹅采纳,获得10
37秒前
壹z完成签到 ,获得积分10
38秒前
44秒前
Kkkk完成签到 ,获得积分10
49秒前
laoxie301发布了新的文献求助20
49秒前
含光完成签到,获得积分10
53秒前
踏实谷蓝完成签到 ,获得积分10
57秒前
激动的xx完成签到 ,获得积分10
58秒前
lige完成签到 ,获得积分10
1分钟前
搜集达人应助laoxie301采纳,获得20
1分钟前
tion66完成签到 ,获得积分10
1分钟前
lqm完成签到,获得积分10
1分钟前
qyzhu完成签到,获得积分10
1分钟前
1分钟前
王聪冲冲冲完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079590
求助须知:如何正确求助?哪些是违规求助? 4297814
关于积分的说明 13388819
捐赠科研通 4121011
什么是DOI,文献DOI怎么找? 2256989
邀请新用户注册赠送积分活动 1261228
关于科研通互助平台的介绍 1195296