A novel family model for dose prediction in esophageal cancer VMAT planning

食管癌 核医学 放射治疗计划 癌症 特征(语言学) 医学 医学物理学 计算机科学 放射治疗 放射科 内科学 语言学 哲学
作者
Hongfei Sun,Yu‐Fen Liu,Wei Huang,Qifeng Wang,Jie Li,Meng Fan,Jiarui Zhu,Zhongfei Wang,Xiaohuan Sun,Jie Gong,Ge Ren,Jing Cai,Lina Zhao
出处
期刊:Medical Physics [Wiley]
卷期号:52 (8)
标识
DOI:10.1002/mp.18059
摘要

The tumor distribution in esophageal cancer exhibits high heterogeneity, making the design of corresponding volumetric modulated arc therapy (VMAT) plans challenging and time-consuming for medical physicists. This study proposes a new family model driven by multi-medical physics prior knowledge to provide clinically acceptable VMAT dose references for esophageal cancer. This study used a training set of 505 esophageal cancer patients and 40 cases of esophageal cancer data from three centers as the testing set. Another 43 cases were used for ablation experiments and prospective evaluation. The anatomical and dosimetric prior knowledge are incorporated as constraints to guide the model in individualized predictions of VMAT dose distributions for esophageal cancer. The new family model comprises three generations of networks. First, a basic model analyzes the deep features within the dose prior knowledge, saving the parameters obtained from feature learning. These parameters, combined with anatomical prior knowledge, are then passed to the second-generation model, which serves as a pedagogical model to establish mapping relationships between anatomical and dosimetric prior knowledge. Finally, the dosimetric related parameters are removed, and a third-generation learning model independently explores potential effective features within the anatomical prior knowledge to generate the predicted VMAT dose distribution. The absolute dose differences between the predicted and ground truth spatial dose distributions within the planning target volume (PTV) were quantified using D98%, D2%, and Dmean. Compared to state-of-the-art (SOTA) models, the new model demonstrated lower values of 49.01 cGy ± 17.93 cGy, 13.94 cGy ± 4.62 cGy, and 9.84 cGy ± 5.51 cGy for D98%, D2%, and Dmean, respectively. In terms of dosimetric evaluation for organs at risk (OARs), it also performed better than other SOTA models. Prospective evaluations revealed that the new model enables medical physicists to save at least 35.3% of their planning time compared to conventional workflows. The novel artificial intelligence approach holds promise in providing medical physicists with valuable guidance for VMAT planning optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一塔湖图完成签到,获得积分10
1秒前
2秒前
兴奋采梦发布了新的文献求助10
3秒前
du发布了新的文献求助10
3秒前
3秒前
lz42346发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Jasper应助珀尔采纳,获得10
6秒前
庞含蕾发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助小鞠采纳,获得10
11秒前
11秒前
11秒前
乐乐应助CCC采纳,获得30
12秒前
想飞的猪发布了新的文献求助10
12秒前
hehe发布了新的文献求助10
12秒前
小奎完成签到,获得积分10
12秒前
13秒前
梁三柏应助想飞的猪采纳,获得10
16秒前
张佳艺发布了新的文献求助10
16秒前
andrele发布了新的文献求助10
16秒前
17秒前
17秒前
21秒前
cn完成签到 ,获得积分10
22秒前
24秒前
25秒前
CWNU_HAN应助风清扬采纳,获得50
28秒前
hg08完成签到,获得积分10
29秒前
solitude完成签到 ,获得积分20
29秒前
29秒前
自信南霜发布了新的文献求助200
29秒前
Sylvia完成签到,获得积分10
29秒前
英姑应助梦珠采纳,获得30
29秒前
31秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241256
求助须知:如何正确求助?哪些是违规求助? 3774887
关于积分的说明 11854495
捐赠科研通 3429828
什么是DOI,文献DOI怎么找? 1882599
邀请新用户注册赠送积分活动 934467
科研通“疑难数据库(出版商)”最低求助积分说明 841016