亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of neoadjuvant therapy response in breast cancer based on interpretable artificial intelligence

医学 人工智能 可解释性 乳腺癌 肿瘤微环境 机器学习 肿瘤科 肿瘤浸润淋巴细胞 判别式 癌症 内科学 免疫疗法 计算机科学
作者
Yao Zhou,Xin Shu,Fan Wang,Hui Xu,Hongqun Tang,Hao Fang,Jing Huang,Yiwei Wang,Hongliang Ji,Shiwei Zhang,Wei Qu,Jianhong Tu,Fan Niu,Libin Deng
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000003326
摘要

Background: To develop an AI-based predictive model for neoadjuvant therapy (NAT) efficacy in breast cancer, we integrated multimodal data and analyzed tumor microenvironment (TME) features to provide interpretability. Methods: We retrospectively analyzed H&E-stained whole-slide images (WSIs) from a multi-center cohort of breast cancer patients receiving NAT to develop an AI predictive model. The cohort was stratified into training, test, internal validation, and external validation sets. Feature extraction used UNI and classification employed a multiple instance learning (MIL) framework. Model performance was evaluated via ROC curve analysis (AUC, precision, specificity, recall). Molecular mechanisms underlying model predictions were explored using TCGA multimodal data, integrating differential gene expression profiling with pathway enrichment analysis (GO, KEGG). TME component correlations with model scores were also investigated. Results: The AI model demonstrated robust discriminative capacity across three residual cancer burden (RCB)-based classification tasks in 826 patients from two centers, achieving peak performance in subtask 2 (NAT-sensitive: RCB 0-1 vs. NAT-resistant: RCB 2-3). For subtask 2, AUCs were 0.901 (training), 0.858 (test), 0.808 (internal validation), and 0.819 (external validation). Molecular analysis linked the model’s predictive efficacy to tumor cell cycle processes. TME analysis revealed positive correlations between model scores and activated immune cells (M0/M1 macrophages, dendritic cells), and negative correlations with inhibitory cells (M2 macrophages, resting mast cells). Crucially, the model’s predictive scores were closely related to tumor-infiltrating lymphocytes (TILs), with spatial colocalization observed between classification weights and TILs distribution. Significant differences in TILs levels occurred across model score strata, validating the model’s biological plausibility in predicting NAT response mechanisms. Conclusion: We developed an interpretable AI model that predicts response to neoadjuvant therapy in breast cancer using H&E slides. The model’s predictions are biologically interpretable, correlating with TME dynamics and spatial TIL patterns, offering a novel strategy for personalizing NAT treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hx完成签到 ,获得积分10
13秒前
14秒前
27秒前
明芬发布了新的文献求助10
27秒前
臭小子发布了新的文献求助10
33秒前
臭小子完成签到,获得积分10
38秒前
blenx完成签到,获得积分10
55秒前
BowieHuang应助科研通管家采纳,获得10
56秒前
ceeray23应助科研通管家采纳,获得10
56秒前
我是老大应助科研通管家采纳,获得50
56秒前
TYM发布了新的文献求助30
1分钟前
1分钟前
迷路千琴完成签到,获得积分10
2分钟前
Eeeeven完成签到 ,获得积分10
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得200
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
追梦远行人完成签到 ,获得积分10
3分钟前
Jay发布了新的文献求助30
3分钟前
TYM发布了新的文献求助10
3分钟前
Jay关闭了Jay文献求助
4分钟前
星辰大海应助TYM采纳,获得10
4分钟前
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
科研通AI6应助明芬采纳,获得10
5分钟前
星辰大海应助谭代涛采纳,获得10
5分钟前
5分钟前
洛莉塔发布了新的文献求助10
5分钟前
洛莉塔完成签到,获得积分10
5分钟前
ding应助明芬采纳,获得10
5分钟前
mathmotive完成签到,获得积分10
5分钟前
6分钟前
6分钟前
谭代涛发布了新的文献求助10
6分钟前
英勇明雪完成签到 ,获得积分10
6分钟前
6分钟前
TYM发布了新的文献求助10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
李健应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671325
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505547
关于科研通互助平台的介绍 1470945