Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture

自愈水凝胶 胚胎干细胞 细胞外基质 明胶 细胞生物学 组织工程 材料科学 生物物理学 基质(化学分析) 生物医学工程 化学 纳米技术 生物 生物化学 医学 高分子化学 复合材料 基因
作者
Xiayi Xu,Qian Feng,Xun Ma,Yingrui Deng,Kunyu Zhang,Hon Son Ooi,Boguang Yang,Zhiyong Zhang,Bo Feng,Liming Bian
出处
期刊:Biomaterials [Elsevier BV]
卷期号:289: 121802-121802 被引量:44
标识
DOI:10.1016/j.biomaterials.2022.121802
摘要

Long-term maintenance of embryonic stem cells (ESCs) in the undifferentiated state is still challenging. Compared with traditional 2D culture methods, 3D culture in biomaterials such as hydrogels is expected to better support the long-term self-renewal of ESCs by emulating the biophysical and biochemical properties of the extracellular matrix (ECM). Although prior studies showed that soft and degradable hydrogels favor the 3D growth of ESCs, few studies have examined the impact of the structural dynamics of the hydrogel matrix on ESC behaviors. Herein, we report a gelatin-based structurally dynamic hydrogel (GelCD hydrogel) that emulates the intrinsic structural dynamics of the ECM. Compared with covalently crosslinked gelatin hydrogels (GelMA hydrogels) with similar stiffness and biodegradability, GelCD hydrogels significantly promote the clonal expansion and viability of encapsulated mouse ESCs (mESCs) independent of MMP-mediated hydrogel degradation. Furthermore, GelCD hydrogels better maintain the pluripotency of encapsulated mESCs than do traditional 2D culture methods that use MEF feeder cells or medium supplementation with GSK3β and MEK 1/2 inhibitors (2i). When cultured in GelCD hydrogels for an extended period (over 2 months) with cell passaging every 7 days, mESCs preserve their normal morphology and maintain their pluripotency and full differentiation capability. Our findings highlight the critical role of the structural dynamics of the hydrogel matrix in accommodating the volume expansion that occurs during clonal ESC growth, and we believe that our dynamic hydrogels represent a valuable tool to support the long-term 3D culture of ESCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyj完成签到,获得积分10
1秒前
嘴角上扬完成签到 ,获得积分10
1秒前
共享精神应助啾咪洁洁采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
2秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
6秒前
6秒前
6秒前
亿666发布了新的文献求助30
6秒前
唐唐完成签到,获得积分10
8秒前
10秒前
Chii完成签到,获得积分10
11秒前
12秒前
852应助Lynn采纳,获得10
12秒前
seven发布了新的文献求助80
13秒前
dd完成签到 ,获得积分10
13秒前
努力的宁发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助50
15秒前
15秒前
刘欢发布了新的文献求助10
16秒前
LYN-66发布了新的文献求助10
16秒前
脑子还给我完成签到,获得积分20
18秒前
佰斯特威完成签到,获得积分10
18秒前
大模型应助Wang采纳,获得10
18秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260103
求助须知:如何正确求助?哪些是违规求助? 3792910
关于积分的说明 11896388
捐赠科研通 3440611
什么是DOI,文献DOI怎么找? 1888248
邀请新用户注册赠送积分活动 938973
科研通“疑难数据库(出版商)”最低求助积分说明 844349