Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture

自愈水凝胶 胚胎干细胞 细胞外基质 明胶 细胞生物学 组织工程 材料科学 生物物理学 基质(化学分析) 生物医学工程 化学 纳米技术 生物 生物化学 医学 高分子化学 复合材料 基因
作者
Xiayi Xu,Qian Feng,Xun Ma,Yingrui Deng,Kunyu Zhang,Hon Son Ooi,Boguang Yang,Zhiyong Zhang,Bo Feng,Liming Bian
出处
期刊:Biomaterials [Elsevier BV]
卷期号:289: 121802-121802 被引量:39
标识
DOI:10.1016/j.biomaterials.2022.121802
摘要

Long-term maintenance of embryonic stem cells (ESCs) in the undifferentiated state is still challenging. Compared with traditional 2D culture methods, 3D culture in biomaterials such as hydrogels is expected to better support the long-term self-renewal of ESCs by emulating the biophysical and biochemical properties of the extracellular matrix (ECM). Although prior studies showed that soft and degradable hydrogels favor the 3D growth of ESCs, few studies have examined the impact of the structural dynamics of the hydrogel matrix on ESC behaviors. Herein, we report a gelatin-based structurally dynamic hydrogel (GelCD hydrogel) that emulates the intrinsic structural dynamics of the ECM. Compared with covalently crosslinked gelatin hydrogels (GelMA hydrogels) with similar stiffness and biodegradability, GelCD hydrogels significantly promote the clonal expansion and viability of encapsulated mouse ESCs (mESCs) independent of MMP-mediated hydrogel degradation. Furthermore, GelCD hydrogels better maintain the pluripotency of encapsulated mESCs than do traditional 2D culture methods that use MEF feeder cells or medium supplementation with GSK3β and MEK 1/2 inhibitors (2i). When cultured in GelCD hydrogels for an extended period (over 2 months) with cell passaging every 7 days, mESCs preserve their normal morphology and maintain their pluripotency and full differentiation capability. Our findings highlight the critical role of the structural dynamics of the hydrogel matrix in accommodating the volume expansion that occurs during clonal ESC growth, and we believe that our dynamic hydrogels represent a valuable tool to support the long-term 3D culture of ESCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liquor完成签到,获得积分10
刚刚
Saureus完成签到,获得积分10
1秒前
爱笑半雪完成签到,获得积分10
1秒前
Sew东坡完成签到,获得积分10
2秒前
汶溢发布了新的文献求助10
2秒前
3秒前
111完成签到,获得积分10
4秒前
5秒前
落落完成签到 ,获得积分10
5秒前
7秒前
章鱼哥完成签到,获得积分10
7秒前
9秒前
布洛芬完成签到,获得积分10
9秒前
liuzhigang完成签到 ,获得积分10
11秒前
SPQR完成签到,获得积分10
12秒前
13秒前
zcnsdtc1991完成签到,获得积分10
13秒前
14秒前
万能图书馆应助东东采纳,获得10
14秒前
15秒前
zxm完成签到,获得积分10
16秒前
Hindiii完成签到,获得积分10
17秒前
年轻半雪发布了新的文献求助10
18秒前
YQT完成签到 ,获得积分10
21秒前
山海任平生完成签到,获得积分10
21秒前
折木浮华完成签到,获得积分10
21秒前
xmz完成签到,获得积分10
22秒前
清秀一凤关注了科研通微信公众号
23秒前
ZH完成签到,获得积分10
23秒前
Army616完成签到,获得积分10
24秒前
初初见你完成签到,获得积分10
25秒前
汶溢完成签到,获得积分10
26秒前
Blessing完成签到 ,获得积分10
26秒前
k.o.完成签到,获得积分10
26秒前
舒服的月饼完成签到 ,获得积分10
28秒前
简单的银耳汤完成签到,获得积分10
28秒前
岑晓冰完成签到 ,获得积分10
30秒前
30秒前
xdy完成签到 ,获得积分10
30秒前
科研通AI5应助张建职采纳,获得30
31秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728