电泳沉积
材料科学
纳米-
电极
沉积(地质)
电泳
纳米技术
化学工程
复合材料
涂层
色谱法
化学
工程类
物理化学
古生物学
沉积物
生物
作者
Vaijayanthi Ramesh,Nadine Stratmann,Viktor Schaufler,Svilen D. Angelov,Ilona D. Nordhorn,Hans E. Heissler,Ricardo Martínez‐Hincapié,Viktor Čolić,Christoph Rehbock,Kerstin Schwabe,Uwe Kärst,Joachim K. Krauss,Stephan Barcikowski
标识
DOI:10.1002/adhm.202102637
摘要
The mechanical stability of implant coatings is crucial for medical approval and transfer to clinical applications. Here, electrophoretic deposition (EPD) is a versatile coating technique, previously shown to cause significant post-surgery impedance reduction of brain stimulation platinum electrodes. However, the mechanical stability of the resulting coating has been rarely systematically investigated. In this work, pulsed-DC EPD of laser-generated platinum nanoparticles (PtNPs) on Pt-based, 3D neural electrodes is performed and the in vitro mechanical stability is examined using agarose gel, adhesive tape, and ultrasonication-based stress tests. EPD-generated coatings are highly stable inside simulated brain environments represented by agarose gel tests as well as after in vivo stimulation experiments. Electrochemical stability of the NP-modified surfaces is tested via cyclic voltammetry and that multiple scans may improve coating stability could be verified, indicated by higher signal stability following highly invasive adhesive tape stress tests. The brain sections post neural stimulation in rats are analyzed via laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Measurements reveal higher levels of Pt near the region stimulated with coated electrodes, in comparison to uncoated controls. Even though local concentrations in the vicinity of the implanted electrode are elevated, the total Pt mass found is below systemic toxicologically relevant concentrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI