基态
水准点(测量)
激发态
电子
统计物理学
能量(信号处理)
金属氢
物理
蓝图
计算机科学
计算物理学
原子物理学
氢
量子力学
机械工程
工程类
地理
大地测量学
作者
Chiheb Ben Mahmoud,Federico Grasselli,Michele Ceriotti
出处
期刊:Physical review
[American Physical Society]
日期:2022-09-27
卷期号:106 (12)
被引量:13
标识
DOI:10.1103/physrevb.106.l121116
摘要
Machine-learning potentials are usually trained on the ground-state,\nBorn-Oppenheimer energy surface, which depends exclusively on the atomic\npositions and not on the simulation temperature. This disregards the effect of\nthermally-excited electrons, that is important in metals, and essential to the\ndescription of warm dense matter. An accurate physical description of these\neffects requires that the nuclei move on a temperature-dependent electronic\nfree energy. We propose a method to obtain machine-learning predictions of this\nfree energy at an arbitrary electron temperature using exclusively training\ndata from ground-state calculations, avoiding the need to train\ntemperature-dependent potentials, and benchmark it on metallic liquid hydrogen\nat the conditions of the core of gas giants and brown dwarfs. This work\ndemonstrates the advantages of hybrid schemes that use physical consideration\nto combine machine-learning predictions, providing a blueprint for the\ndevelopment of similar approaches that extend the reach of atomistic modelling\nby removing the barrier between physics and data-driven methodologies.\n
科研通智能强力驱动
Strongly Powered by AbleSci AI