Familial Hypercholesterolemia Identification by Machine Learning Using Lipid Profile Data Performs as Well as Clinical Diagnostic Criteria

医学 家族性高胆固醇血症 接收机工作特性 逻辑回归 随机森林 人工智能 切断 机器学习 数据集 金标准(测试) 内科学 胆固醇 计算机科学 量子力学 物理
作者
Reinhardt Hesse,Frederick J. Raal,Cert Endo,Dirk J. Blom,Jaya A. George
出处
期刊:Circulation [Wolters Kluwer]
卷期号:15 (5)
标识
DOI:10.1161/circgen.121.003324
摘要

Background: Familial hypercholesterolemia (FH) is a common genetic disorder and, if not diagnosed and treated early, results in premature cardiovascular disease. Most individuals with FH are undiagnosed and machine learning offers a new prospect to improve FH identification. Our objective was to create a machine learning model from basic lipid profile data with better screening performance than LDL-C (low-density lipoprotein cholesterol) cutoff levels and diagnostic performance comparable to the Dutch Lipid Clinic Network criteria. Methods: The model was developed combining logistic regression, deep learning, and random forest classification and trained on a 70% split of a data set of individuals clinically suspected of having FH. Model performance, as well as that of the LDL-C cutoff and Dutch Lipid Clinic Network criteria, were assessed on the internal 30% testing data set and an external data set by comparing the area under the receiver operator characteristic (AUROC) curves. All methodologies were measured against the gold standard of FH diagnosis by mutation identification. Furthermore, the model was also tested on 2 lower prevalence data sets. Results: The machine learning model achieved an AUROC curve of 0.711 on the external data set (n=1376; FH prevalence=64%), which was superior to the LDL-C cutoff (AUROC=0.642) and comparable to the Dutch Lipid Clinic Network criteria (AUROC=0.705). The model performed even better when tested on the medium-prevalence (n=2655; FH prevalence=20%) and low-prevalence (n=1616; FH prevalence=1%) data sets, with AUROC curve values of 0.801 and 0.856, respectively. Conclusions: Despite absence of clinical information, the model better identified genetically confirmed FH in a cohort of individuals suspected of having FH than LDL-C cutoff values and was comparable to the Dutch Lipid Clinic Network criteria. The model achieved higher accuracy when tested on 2 cohorts with lower FH prevalence. The application of machine learning is, therefore, a promising tool in both the screening for, and diagnosis of, individuals with FH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘤鸣完成签到,获得积分10
刚刚
顾矜应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
ldy完成签到 ,获得积分10
2秒前
花开四海完成签到 ,获得积分10
3秒前
guoer发布了新的文献求助10
3秒前
Yynnn完成签到 ,获得积分10
5秒前
领导范儿应助guoer采纳,获得10
9秒前
看文献完成签到,获得积分10
10秒前
孤独从云完成签到,获得积分10
11秒前
BCKT完成签到,获得积分10
14秒前
YangSY完成签到,获得积分10
14秒前
赘婿应助尼可刹米洛贝林采纳,获得10
23秒前
深情访文完成签到,获得积分10
27秒前
tyt完成签到 ,获得积分10
27秒前
忞航完成签到 ,获得积分10
30秒前
30秒前
小石头完成签到 ,获得积分10
30秒前
风之飘渺者也完成签到,获得积分10
34秒前
我爱科研发布了新的文献求助10
35秒前
skyleon完成签到,获得积分10
38秒前
39秒前
44秒前
neverever完成签到,获得积分10
44秒前
nihui完成签到 ,获得积分10
45秒前
雁塔完成签到 ,获得积分10
45秒前
123完成签到 ,获得积分10
46秒前
我爱科研完成签到,获得积分10
46秒前
48秒前
旋转木马9个完成签到 ,获得积分10
49秒前
ytli完成签到 ,获得积分10
49秒前
55秒前
曾经白亦完成签到 ,获得积分10
55秒前
suix237完成签到,获得积分10
56秒前
penguin完成签到,获得积分10
56秒前
qzp完成签到 ,获得积分10
58秒前
无私逊发布了新的文献求助10
58秒前
Casey完成签到 ,获得积分10
58秒前
在路上完成签到 ,获得积分0
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800994
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063070
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726