The AI revolution in glaucoma: Bridging challenges with opportunities

转化式学习 概化理论 人工智能 医疗保健 模式 大数据 机器学习 数据科学 医学 风险分析(工程) 心理学 计算机科学 数据挖掘 教育学 发展心理学 社会科学 社会学 经济 经济增长
作者
Fei Li,Biao Wang,Zefeng Yang,Yinhang Zhang,Jiaxuan Jiang,Xiaoyi Liu,Kangjie Kong,Fengqi Zhou,Clement C. Tham,Felipe A. Medeiros,Ying Han,Andrzej Grzybowski,Linda M. Zangwill,Dennis S.C. Lam,Xiulan Zhang
出处
期刊:Progress in Retinal and Eye Research [Elsevier]
卷期号:103: 101291-101291 被引量:19
标识
DOI:10.1016/j.preteyeres.2024.101291
摘要

Recent advancements in artificial intelligence (AI) herald transformative potentials for reshaping glaucoma clinical management, improving screening efficacy, sharpening diagnosis precision, and refining the detection of disease progression. However, incorporating AI into healthcare usages faces significant hurdles in terms of developing algorithms and putting them into practice. When creating algorithms, issues arise due to the intensive effort required to label data, inconsistent diagnostic standards, and a lack of thorough testing, which often limits the algorithms' widespread applicability. Additionally, the "black box" nature of AI algorithms may cause doctors to be wary or skeptical. When it comes to using these tools, challenges include dealing with lower-quality images in real situations and the systems' limited ability to work well with diverse ethnic groups and different diagnostic equipment. Looking ahead, new developments aim to protect data privacy through federated learning paradigms, improving algorithm generalizability by diversifying input data modalities, and augmenting datasets with synthetic imagery. The integration of smartphones appears promising for using AI algorithms in both clinical and non-clinical settings. Furthermore, bringing in large language models (LLMs) to act as interactive tool in medicine may signify a significant change in how healthcare will be delivered in the future. By navigating through these challenges and leveraging on these as opportunities, the field of glaucoma AI will not only have improved algorithmic accuracy and optimized data integration but also a paradigmatic shift towards enhanced clinical acceptance and a transformative improvement in glaucoma care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心心发布了新的文献求助20
刚刚
顾矜应助DraGon采纳,获得10
1秒前
2秒前
5秒前
所所应助哈哈采纳,获得10
5秒前
5秒前
YuLu发布了新的文献求助10
6秒前
黑兔子发布了新的文献求助10
7秒前
顾矜应助张兴艳采纳,获得10
7秒前
7秒前
汉堡包应助ppchenup采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
鱼大大发布了新的文献求助10
10秒前
一一完成签到 ,获得积分10
10秒前
10秒前
11秒前
嘿嘿发布了新的文献求助10
12秒前
L77发布了新的文献求助10
12秒前
13秒前
15秒前
ju发布了新的文献求助10
15秒前
15秒前
南北哈基咪完成签到 ,获得积分10
16秒前
19秒前
嘿嘿发布了新的文献求助10
20秒前
古琴残梦发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
蓝天应助科研通管家采纳,获得10
22秒前
蓝天应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
23秒前
蓝天应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
23秒前
24秒前
26秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620743
求助须知:如何正确求助?哪些是违规求助? 4705287
关于积分的说明 14931303
捐赠科研通 4762860
什么是DOI,文献DOI怎么找? 2551173
邀请新用户注册赠送积分活动 1513769
关于科研通互助平台的介绍 1474655