Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy

孟德尔随机化 生物标志物 接收机工作特性 随机森林 生物标志物发现 计算生物学 微阵列分析技术 机器学习 支持向量机 特征选择 基因 医学 基因表达 生物信息学 人工智能 生物 遗传学 计算机科学 基因型 蛋白质组学 遗传变异
作者
Yidong Zhu,Jun Liu,Bo Wang
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (12): 5646-5660 被引量:1
标识
DOI:10.1111/dom.15933
摘要

Abstract Aim To identify potential biomarkers and explore the mechanisms underlying diabetic nephropathy (DN) by integrating machine learning, Mendelian randomization (MR) and experimental validation. Methods Microarray and RNA‐sequencing datasets (GSE47184, GSE96804, GSE104948, GSE104954, GSE142025 and GSE175759) were obtained from the Gene Expression Omnibus database. Differential expression analysis identified the differentially expressed genes (DEGs) between patients with DN and controls. Diverse machine learning algorithms, including least absolute shrinkage and selection operator, support vector machine‐recursive feature elimination, and random forest, were used to enhance gene selection accuracy and predictive power. We integrated summary‐level data from genome‐wide association studies on DN with expression quantitative trait loci data to identify genes with potential causal relationships to DN. The predictive performance of the biomarker gene was validated using receiver operating characteristic (ROC) curves. Gene set enrichment and correlation analyses were conducted to investigate potential mechanisms. Finally, the biomarker gene was validated using quantitative real‐time polymerase chain reaction in clinical samples from patients with DN and controls. Results Based on identified 314 DEGs, seven characteristic genes with high predictive performance were identified using three integrated machine learning algorithms. MR analysis revealed 219 genes with significant causal effects on DN, ultimately identifying one co‐expressed gene, carbonic anhydrase II ( CA2 ), as a key biomarker for DN. The ROC curves demonstrated the excellent predictive performance of CA2 , with area under the curve values consistently above 0.878 across all datasets. Additionally, our analysis indicated a significant association between CA2 and infiltrating immune cells in DN, providing potential mechanistic insights. This biomarker was validated using clinical samples, confirming the reliability of our findings in clinical practice. Conclusion By integrating machine learning, MR and experimental validation, we successfully identified and validated CA2 as a promising biomarker for DN with excellent predictive performance. The biomarker may play a role in the pathogenesis and progression of DN via immune‐related pathways. These findings provide important insights into the molecular mechanisms underlying DN and may inform the development of personalized treatment strategies for this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助bckl888采纳,获得10
刚刚
斯文败类应助YWH采纳,获得30
刚刚
和尘同光发布了新的文献求助10
刚刚
Joker发布了新的文献求助10
刚刚
1秒前
zyw发布了新的文献求助10
1秒前
Yvette完成签到 ,获得积分10
2秒前
黄丹完成签到,获得积分10
2秒前
2秒前
执着梦山完成签到,获得积分10
3秒前
3秒前
科研王完成签到 ,获得积分10
3秒前
嘻嘻嘻发布了新的文献求助10
3秒前
4秒前
风中黎昕完成签到 ,获得积分10
4秒前
Jasper应助阿呆采纳,获得10
4秒前
王涛发布了新的文献求助10
4秒前
木之木完成签到,获得积分0
4秒前
6秒前
小玉完成签到,获得积分10
6秒前
6秒前
6秒前
daydreamammaking完成签到,获得积分10
6秒前
7秒前
清脆的又蓝完成签到,获得积分10
7秒前
7秒前
giant_panda发布了新的文献求助10
7秒前
虚幻的城发布了新的文献求助10
7秒前
8秒前
feimengxia发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
壮观不斜发布了新的文献求助10
10秒前
Jasmine发布了新的文献求助10
10秒前
在水一方应助小小铱采纳,获得10
11秒前
11秒前
曲小晴完成签到,获得积分10
11秒前
彩色蘑菇完成签到,获得积分10
12秒前
AliceLan完成签到,获得积分10
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092657
求助须知:如何正确求助?哪些是违规求助? 3631418
关于积分的说明 11509690
捐赠科研通 3342272
什么是DOI,文献DOI怎么找? 1837095
邀请新用户注册赠送积分活动 904928
科研通“疑难数据库(出版商)”最低求助积分说明 822708