亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy

孟德尔随机化 生物标志物 接收机工作特性 随机森林 生物标志物发现 计算生物学 微阵列分析技术 机器学习 支持向量机 特征选择 基因 医学 基因表达 生物信息学 人工智能 生物 遗传学 计算机科学 基因型 蛋白质组学 遗传变异
作者
Yidong Zhu,Jun Liu,Bo Wang
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (12): 5646-5660 被引量:5
标识
DOI:10.1111/dom.15933
摘要

Abstract Aim To identify potential biomarkers and explore the mechanisms underlying diabetic nephropathy (DN) by integrating machine learning, Mendelian randomization (MR) and experimental validation. Methods Microarray and RNA‐sequencing datasets (GSE47184, GSE96804, GSE104948, GSE104954, GSE142025 and GSE175759) were obtained from the Gene Expression Omnibus database. Differential expression analysis identified the differentially expressed genes (DEGs) between patients with DN and controls. Diverse machine learning algorithms, including least absolute shrinkage and selection operator, support vector machine‐recursive feature elimination, and random forest, were used to enhance gene selection accuracy and predictive power. We integrated summary‐level data from genome‐wide association studies on DN with expression quantitative trait loci data to identify genes with potential causal relationships to DN. The predictive performance of the biomarker gene was validated using receiver operating characteristic (ROC) curves. Gene set enrichment and correlation analyses were conducted to investigate potential mechanisms. Finally, the biomarker gene was validated using quantitative real‐time polymerase chain reaction in clinical samples from patients with DN and controls. Results Based on identified 314 DEGs, seven characteristic genes with high predictive performance were identified using three integrated machine learning algorithms. MR analysis revealed 219 genes with significant causal effects on DN, ultimately identifying one co‐expressed gene, carbonic anhydrase II ( CA2 ), as a key biomarker for DN. The ROC curves demonstrated the excellent predictive performance of CA2 , with area under the curve values consistently above 0.878 across all datasets. Additionally, our analysis indicated a significant association between CA2 and infiltrating immune cells in DN, providing potential mechanistic insights. This biomarker was validated using clinical samples, confirming the reliability of our findings in clinical practice. Conclusion By integrating machine learning, MR and experimental validation, we successfully identified and validated CA2 as a promising biomarker for DN with excellent predictive performance. The biomarker may play a role in the pathogenesis and progression of DN via immune‐related pathways. These findings provide important insights into the molecular mechanisms underlying DN and may inform the development of personalized treatment strategies for this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星科语发布了新的文献求助10
11秒前
FLANKS完成签到,获得积分10
11秒前
ybk666完成签到,获得积分10
34秒前
charih完成签到 ,获得积分10
40秒前
46秒前
50秒前
hc发布了新的文献求助10
55秒前
AliEmbark完成签到,获得积分10
56秒前
CodeCraft应助RaskoRR采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
冷酷的涵易完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
luole发布了新的文献求助10
1分钟前
hanlin完成签到,获得积分10
1分钟前
1分钟前
科研米虫发布了新的文献求助10
1分钟前
1分钟前
AXX041795发布了新的文献求助10
1分钟前
李健应助冷酷的涵易采纳,获得10
1分钟前
1分钟前
2分钟前
FLANKS发布了新的文献求助10
2分钟前
平淡的衣完成签到,获得积分10
2分钟前
NexusExplorer应助AXX041795采纳,获得10
2分钟前
星星科语发布了新的文献求助10
2分钟前
简单发布了新的文献求助20
2分钟前
魔幻的芳完成签到,获得积分10
2分钟前
SSY发布了新的文献求助10
2分钟前
火星上的宝马完成签到,获得积分10
2分钟前
平淡的衣发布了新的文献求助20
2分钟前
2分钟前
悲凉的忆南完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
陈旧完成签到,获得积分10
2分钟前
2分钟前
2分钟前
欣欣子完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187