A Review of the Intelligent Condition Monitoring of Rolling Element Bearings

状态监测 滚动轴承 计算机科学 可靠性(半导体) 稳健性(进化) 方位(导航) 加速度计 传感器融合 信号处理 控制工程 人工智能 频域 特征提取 工程类 机器学习 振动 数字信号处理 计算机视觉 物理 功率(物理) 生物化学 化学 量子力学 计算机硬件 电气工程 基因 操作系统
作者
Vigneshwar Kannan,Tieling Zhang,Huaizhong Li
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:12 (7): 484-484 被引量:2
标识
DOI:10.3390/machines12070484
摘要

Bearing component damage contributes significantly to rotating machinery failures. It is vital for the rotor-bearing system to be in good condition to ensure the proper functioning of the machine. Over recent decades, extensive research has been devoted to the condition monitoring of rotational machinery, with a particular focus on bearing health. This paper provides a comprehensive literature review of recent advancements in intelligent condition monitoring technologies for rolling element bearings. Fundamental monitoring strategies are introduced, covering various sensing, signal processing, and feature extraction techniques for detecting defects in rolling element bearings. While vibration-based monitoring remains prevalent, alternative sensor types are also explored, offering complementary diagnostic capabilities or detecting different defect types compared to accelerometers alone. Signal processing and feature extraction techniques, including time domain, frequency domain, and time–frequency domain analysis, are discussed for their ability to provide diverse perspectives for signal representation, revealing unique insights relevant to condition monitoring. Special attention is given to information fusion methodologies and the application of intelligent algorithms. Multisensor systems, whether homogeneous or heterogeneous, integrated with information fusion techniques hold promise in enhancing accuracy and reliability by overcoming limitations associated with single-sensor monitoring. Furthermore, the adoption of AI techniques, such as machine learning, metaheuristic optimisation, and deep-learning methods, has led to significant advancements in condition monitoring, yielding successful outcomes with improved accuracy and robustness in various studies. Finally, avenues for further advancements to improve monitoring accuracy and reliability are identified, offering insights into future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
树树发布了新的文献求助10
1秒前
wjx关闭了wjx文献求助
1秒前
cici完成签到,获得积分10
1秒前
1秒前
SYM完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
寻找论文完成签到,获得积分10
3秒前
隐形的冰海完成签到,获得积分10
4秒前
4秒前
Xiii关注了科研通微信公众号
5秒前
郜连虎发布了新的文献求助10
6秒前
6秒前
L_Gary完成签到 ,获得积分10
6秒前
7秒前
wwwww发布了新的文献求助10
8秒前
zzzzzzz发布了新的文献求助10
8秒前
李Li发布了新的文献求助10
8秒前
9秒前
md完成签到,获得积分10
9秒前
9秒前
9秒前
风中伯云发布了新的文献求助50
9秒前
大模型应助可耐的道之采纳,获得10
10秒前
欢呼白晴完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
鱼鱼鱼发布了新的文献求助10
10秒前
星辰大海应助ZJPPPP采纳,获得10
11秒前
11秒前
sdbgsd发布了新的文献求助10
12秒前
Jasper应助zzzzzzz采纳,获得10
13秒前
CYL295发布了新的文献求助10
14秒前
落后心锁关注了科研通微信公众号
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462912
求助须知:如何正确求助?哪些是违规求助? 3925880
关于积分的说明 12182640
捐赠科研通 3578361
什么是DOI,文献DOI怎么找? 1965960
邀请新用户注册赠送积分活动 1004730
科研通“疑难数据库(出版商)”最低求助积分说明 899061