磷脂酰丝氨酸
炎症
磷脂酰乙醇胺
免疫系统
发病机制
疾病
免疫学
类风湿性关节炎
免疫
氧化应激
磷脂酰胆碱
关节炎
化学
医学
生物
生物化学
磷脂
内科学
膜
作者
Matilde Santos,Tânia Melo,Tatiana Maurício,Helena Ferreira,Pedro Domingues,M. Rosário M. Domingues
标识
DOI:10.1002/1873-3468.14992
摘要
Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.
科研通智能强力驱动
Strongly Powered by AbleSci AI