工作流程
计算机科学
代码本
观点
编码(社会科学)
知识管理
数据科学
定性研究
定性性质
代码评审
软件工程
软件
软件开发
人工智能
静态程序分析
程序设计语言
数据库
机器学习
社会学
艺术
社会科学
视觉艺术
作者
Jie Gao,Yuchen Guo,Gionnieve Lim,Tianqin Zhang,Zheng Zhang,Toby Jia-Jun Li,Simon T. Perrault
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:3
标识
DOI:10.48550/arxiv.2304.07366
摘要
Collaborative Qualitative Analysis (CQA) can enhance qualitative analysis rigor and depth by incorporating varied viewpoints. Nevertheless, ensuring a rigorous CQA procedure itself can be both demanding and costly. To lower this bar, we take a theoretical perspective to design the CollabCoder workflow, that integrates Large Language Models (LLMs) into key inductive CQA stages: independent open coding, iterative discussions, and final codebook creation. In the open coding phase, CollabCoder offers AI-generated code suggestions and records decision-making data. During discussions, it promotes mutual understanding by sharing this data within the coding team and using quantitative metrics to identify coding (dis)agreements, aiding in consensus-building. In the code grouping stage, CollabCoder provides primary code group suggestions, lightening the cognitive load of finalizing the codebook. A 16-user evaluation confirmed the effectiveness of CollabCoder, demonstrating its advantages over existing software and providing empirical insights into the role of LLMs in the CQA practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI