Identifying Key Residues in Lysine Decarboxylase for Soluble Expression Using Consensus Design Soluble Mutant Screening (ConsenSing)

突变体 定向进化 钥匙(锁) 赖氨酸 羧基裂解酶 计算生物学 赖氨酸脱羧酶 生物化学 生物 化学 氨基酸 基因 生态学 尸体 腐胺
作者
Jin Young Kim,Gyeong-Guk Park,Eun-Jung Kim,Bum Seok Park,Jeongchan Lee,Hanbit Song,Beom Gi Park,Romas J. Kazlauskas,Joo‐Hyun Seo,Byung‐Gee Kim
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (5): 1474-1486 被引量:1
标识
DOI:10.1021/acssynbio.2c00670
摘要

Although recent advances in deep learning approaches for protein engineering have enabled quick prediction of hot spot residues improving protein solubility, the predictions do not always correspond to an actual increase in solubility under experimental conditions. Therefore, developing methods that rapidly confirm the linkage between computational predictions and empirical results is essential to the success of improving protein solubility of target proteins. Here, we present a simple hybrid approach to computationally predict hot spots possibly improving protein solubility by sequence-based analysis and empirically explore valuable mutants using split GFP as a reporter system. Our approach, Consensus design Soluble Mutant Screening (ConsenSing), utilizes consensus sequence prediction to find hot spots for improvement of protein solubility and constructs a mutant library using Darwin assembly to cover all possible mutations in one pot but still keeps the library as compact as possible. This approach allowed us to identify multiple mutants of Escherichia coli lysine decarboxylase, LdcC, with substantial increases in soluble expression. Further investigation led us to pinpoint a single critical residue for the soluble expression of LdcC and unveiled its mechanism for such improvement. Our approach demonstrated that following a protein's natural evolutionary path provides insights to improve protein solubility and/or increase protein expression by a single residue mutation, which can significantly change the profile of protein solubility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
杨生完成签到,获得积分10
2秒前
乐观的忆枫完成签到,获得积分10
3秒前
所所应助66采纳,获得10
4秒前
怕黑的钥匙完成签到 ,获得积分10
5秒前
搜集达人应助Revision采纳,获得10
5秒前
6秒前
guobiao发布了新的文献求助30
6秒前
ycccccc完成签到 ,获得积分10
8秒前
12秒前
13秒前
SYLH应助年轻的馒头采纳,获得10
15秒前
15秒前
SYLH应助执着采纳,获得10
15秒前
15秒前
科研通AI5应助guobiao采纳,获得10
17秒前
成事在人307完成签到,获得积分10
17秒前
18秒前
19秒前
现代的秋白完成签到,获得积分10
21秒前
AlvinCZY发布了新的文献求助10
21秒前
Tess发布了新的文献求助10
21秒前
BoBo完成签到 ,获得积分10
22秒前
金丽丽呀发布了新的文献求助10
24秒前
QIMUSEN发布了新的文献求助10
24秒前
WongGingYong发布了新的文献求助10
25秒前
y943关注了科研通微信公众号
25秒前
领导范儿应助Tess采纳,获得10
27秒前
28秒前
28秒前
姆姆没买完成签到 ,获得积分10
29秒前
30秒前
30秒前
cdercder应助大神水瓶座采纳,获得10
30秒前
阿文发布了新的文献求助10
30秒前
zho发布了新的文献求助10
33秒前
33秒前
cryscilla发布了新的文献求助10
35秒前
Nixthon发布了新的文献求助10
35秒前
巴啦啦能量完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809074
求助须知:如何正确求助?哪些是违规求助? 3353748
关于积分的说明 10366884
捐赠科研通 3069992
什么是DOI,文献DOI怎么找? 1685889
邀请新用户注册赠送积分活动 810759
科研通“疑难数据库(出版商)”最低求助积分说明 766335