已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Clinical value of a differentiation prediction model for invasive lung adenocarcinoma].

接收机工作特性 腺癌 医学 无线电技术 免疫组织化学 内科学 病理 肿瘤科 放射科 癌症
作者
Wenli Shan,Dexu Kong,H Zhang,J D Zhang,Shaofeng Duan,Lukun Guo
出处
期刊:PubMed 卷期号:44 (7): 767-775 被引量:2
标识
DOI:10.3760/cma.j.cn112152-20200102-00002
摘要

Objective: To investigate the value of predicting the degree of differentiation of pulmonary invasive adenocarcinoma (IAC) based on CT image radiomics model and the expression difference of immunohistochemical factors between different degrees of differentiation of lesions. Methods: The clinicopathological data of patients with pulmonary IAC confirmed by surgical pathology in the Affiliated Huai'an First People's Hospital to Nanjing Medical University from December 2017 to September 2018 were collected. High-throughput feature acquisition was performed for all outlined regions of interest, and prediction models were constructed after dimensionality reduction by the minimum absolute shrinkage operator. Receiver operating characteristic curve was used to assess the predictive efficacy of clinical characteristic model, radiomics model and individualized prediction model combined with both to identify the degree of pulmonary IAC differentiation, and immunohistochemical expressions of Ki-67, NapsinA and TTF-1 were compared between groups with different degrees of IAC differentiation using rank sum test. Results: A total of 396 high-throughput features were extracted from all IAC lesions, and 10 features with high generalization ability and correlation with the degree of IAC differentiation were screened. The mean radiomics score of poorly differentiated IAC in the training group (1.206) was higher than that of patients with high and medium differentiation (0.969, P=0.001), and the mean radiomics score of poorly differentiated IAC in the test group (1.545) was higher than that of patients with high and medium differentiation (-0.815, P<0.001). The differences in gender (P<0.001), pleural stretch sign (P=0.005), and burr sign (P=0.033) were statistically significant between patients in the well and poorly differentiated IAC groups. Multifactorial logistic regression analysis showed that gender and pleural stretch sign were related to the degree of IAC differentiation (P<0.05). The clinical feature model consisted of age, gender, pleural stretch sign, burr sign, tumor vessel sign, and vacuolar sign, and the individualized prediction model consisted of gender, pleural stretch sign, and radiomic score, and was represented by a nomogram. The Akaike information standard values of the radiomics model, clinical feature model and individualized prediction model were 54.756, 82.214 and 53.282, respectively. The individualized prediction model was most effective in identifying the degree of differentiation of pulmonary IAC, and the area under the curves (AUC) of the individualized prediction model in the training group and the test group were 0.92 (95% CI: 0.86-0.99) and 0.88 (95% CI: 0.74-1.00, respectively). The AUCs of the radiomics group model for predicting the degree of differentiation of pulmonary IAC in the training group and the test group were 0.91 (95% CI: 0.83-0.98) and 0.87 (95% CI: 0.72-1.00), respectively. The AUCs of the clinical characteristics model for predicting the degree of differentiation of pulmonary IACs in the training and test groups were 0.75 (95% CI: 0.63-0.86) and 0.76 (95% CI: 0.59-0.94), respectively. The expression level of Ki-67 in poorly differentiated IAC was higher than that in well-differentiated IAC (P<0.001). The expression levels of NapsinA, TTF-1 in poorly differentiated IAC were higher than those in well-differentiated IAC (P<0.05). Conclusions: Individualized prediction model consisted of gender, pleural stretch sign and radiomics score can discriminate the differentiation degree of IAC with the best performance in comparison with clinical feature model and radiomics model. Ki-67, NapsinA and TTF-1 express differently in different degrees of differentiation of IAC.目的: 探讨基于CT图像影像组学列线图模型预测肺浸润性腺癌(IAC)分化程度的价值及免疫组化因子在肿瘤不同分化程度间的表达差异。 方法: 收集2017年12月至2018年9月南京医科大学附属淮安第一医院经手术病理证实为肺IAC患者的临床病理资料。对所有勾画感兴趣区进行高通量特征采集,经最小绝对收缩算子降维处理后构建预测模型。采用受试者工作特征曲线评估临床特征模型、影像组学模型及两者联合的个体化预测模型鉴别肺IAC分化程度的预测效能,免疫组化Ki-67、NapsinA、甲状腺转录因子1(TTF-1)在IAC不同分化程度的组间比较采用秩和检验。 结果: 全组IAC病灶中共提取出396个高通量特征,筛选出10个泛化能力较高、与IAC分化程度相关的特征。训练组低分化IAC的影像组学评分平均值(1.206)高于中高分化患者(0.969,P=0.001),测试组低分化IAC的影像组学评分平均值(1.545)高于中高分化患者(-0.815,P<0.001)。中高分化IAC组和低分化IAC组患者的性别(P<0.001)、胸膜牵拉征(P=0.005)、毛刺征(P=0.033)差异均有统计学意义。多因素logistic回归分析显示,性别、胸膜牵拉征与IAC分化程度有关(均P<0.05)。临床特征模型由年龄、性别、胸膜牵拉征、毛刺征、肿瘤血管征、空泡征组成,个体化预测模型由性别、胸膜牵拉征及影像组学评分构成,并由列线图表示。影像组学模型、临床特征模型和个体化预测模型的Akaike信息标准值分别为54.756、82.214和53.282。个体化预测模型对鉴别肺IAC分化程度的效能最高,个体化预测模型在训练组和测试组中的曲线下面积(AUC)分别为0.92(95% CI:0.86~0.99)和0.88(95% CI:0.74~1.00);影像组模型在训练组和测试组中预测肺IAC分化程度的AUC分别为0.91(95% CI:0.83~0.98)和0.87(95% CI:0.72~1.00);临床特征模型在训练组和测试组中预测肺IAC分化程度的AUC分别为0.75(95% CI:0.63~0.86)和0.76(95% CI:0.59~0.94)。Ki-67在低分化IAC中的表达水平高于中高分化IAC(P<0.001),NapsinA、TTF-1在中高分化IAC中的表达高于低分化IAC(均P<0.05)。 结论: 由性别、胸膜牵拉征及影像组学评分构建的个体化预测模型对浸润性肺腺癌的分化程度具有较高的鉴别效能。Ki-67、NapsinA、TTF-1在浸润性肺腺癌不同分化程度间的表达不同。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alexysw完成签到,获得积分10
1秒前
1秒前
英俊的铭应助迅速谷云采纳,获得10
1秒前
Rapa完成签到,获得积分10
2秒前
深情安青应助观鹤轩采纳,获得10
2秒前
3秒前
导师老八完成签到,获得积分10
4秒前
4秒前
HJJHJH发布了新的文献求助10
5秒前
wackykao完成签到,获得积分10
5秒前
5秒前
6秒前
Double_N完成签到,获得积分10
6秒前
慈善家完成签到,获得积分10
7秒前
导师老八发布了新的文献求助10
8秒前
8秒前
锰锂发布了新的文献求助10
8秒前
dywen发布了新的文献求助10
9秒前
芯止谭轩完成签到,获得积分10
10秒前
多多发布了新的文献求助10
11秒前
司马雨泽完成签到,获得积分20
11秒前
情怀应助咩咩采纳,获得10
13秒前
13秒前
Hello应助theverve采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得30
15秒前
鸣笛应助科研通管家采纳,获得30
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得20
16秒前
韩凡发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
17秒前
19秒前
多多完成签到,获得积分10
19秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897471
求助须知:如何正确求助?哪些是违规求助? 3441574
关于积分的说明 10822227
捐赠科研通 3166385
什么是DOI,文献DOI怎么找? 1749392
邀请新用户注册赠送积分活动 845306
科研通“疑难数据库(出版商)”最低求助积分说明 788583