Broadband acoustic meta-liner with metal foam approaching causality-governed minimal thickness

材料科学 声学 吸收(声学) 声阻抗 衰减 谐振器 宽带 亥姆霍兹谐振器 声衰减 振荡(细胞信号) 工作(物理)
作者
Hua Ding,Nengyin Wang,Sheng Qiu,Sibo Huang,Zhiling Zhou,Chengcheng Zhou,Bin Jia,Yong Li
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:232: 107601-107601
标识
DOI:10.1016/j.ijmecsci.2022.107601
摘要

Acoustic absorbers based on resonant cavities or porous materials have been extensively investigated for developing acoustic liners but still suffer from narrow working frequency bands or bulky sizes. Here, we present a meta-liner capable of high-efficiency and broadband sound attenuation via the causality-governed minimal thickness, which utilizes the coherent couplings among the resonant structures and porous materials to enhance the absorption efficiency. The meta-liner consists of a series of parallel-coupled neck-embedded Helmholtz resonators (NEHRs) and a micro-perforated panel (MPP) backed with a metal-foam-filled gap. In constructing the meta-liner, the metal foam plays an essential role in achieving the over-damped condition and the suppression of impedance oscillation, which therefore facilitates the realization of the minimum thickness and the consistently-high absorption avoiding absorption dips. Distinct from the design methods employed in previous studies that take deficient consideration of the effect of high-order acoustic waves, this work introduces the acoustic grating diffraction theory to comprehensively modulate the coupling effects of meta-liners’ components from fundamental and high-order waves, which enables more precise modulation of meta-liners and leads to improve absorption performance in practice. As a proof-of-concept demonstration, we theoretically designed and experimentally validated a meta-liner supporting unanimously high-efficiency sound absorption from 800 Hz to 3200 Hz with a thickness of only 40 mm. Our work enriches the design concepts of acoustic liners and provides an efficient pathway to construct broadband meta-liners against absorption dips via the causality-governed thinnest structures, which may benefit the applications in noise-control engineering and impedance engineering. • The presented meta-liner with metal foam achieves unanimously high-efficiency sound absorption from 800 Hz to 3200 Hz via a thin structure of 40 mm. • Metal foam is utilized to modulate the intrinsic losses of the meta-liner in light of the causality-governed optimal condition. • The theoretical model enables efficient modulation of high-order couplings of complex acoustic liners and contributes to improved absorption performance. • The coupling effects among the meta-liners’ components of dominants the overall absorption performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
拼搏城发布了新的文献求助10
2秒前
2秒前
4秒前
英姑应助科研通管家采纳,获得10
5秒前
珂伟应助科研通管家采纳,获得10
5秒前
珂伟应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
cctv18应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得20
6秒前
6秒前
msny关注了科研通微信公众号
6秒前
7秒前
8秒前
9秒前
77发布了新的文献求助10
11秒前
小荇发布了新的文献求助10
12秒前
13秒前
13秒前
Mxj0607发布了新的文献求助10
15秒前
msny发布了新的文献求助10
18秒前
18秒前
自信夜蓉发布了新的文献求助10
19秒前
酷波er应助caili采纳,获得10
19秒前
颜路完成签到,获得积分10
20秒前
朗源Wu发布了新的文献求助10
20秒前
22秒前
23秒前
小二郎应助chee采纳,获得30
24秒前
26秒前
彭于晏应助yyj采纳,获得10
27秒前
小马甲应助jayzhang0771采纳,获得10
28秒前
fiu~完成签到 ,获得积分10
29秒前
mmm4完成签到 ,获得积分10
29秒前
海之蓝发布了新的文献求助10
29秒前
34秒前
青岩完成签到 ,获得积分10
35秒前
落后的皮卡丘完成签到,获得积分10
35秒前
海之蓝完成签到,获得积分10
35秒前
李爱国应助自由的痱子采纳,获得10
36秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2482714
求助须知:如何正确求助?哪些是违规求助? 2144970
关于积分的说明 5471928
捐赠科研通 1867333
什么是DOI,文献DOI怎么找? 928190
版权声明 563073
科研通“疑难数据库(出版商)”最低求助积分说明 496600