亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative prediction of Ki-67 expression and risk stratification in gliomas using multiparametric MRI and intratumor heterogeneity-based habitat imaging: a multicenter study

作者
Xingrui Wang,Hao Wu,Yuanzheng Wang,Wenzhong Hu,Shiteng Suo,Liemei Guo,Dongxu Zhao,Shilei Zhang,Chen Li,Zhenhui Xie,Yang Song,Wentao Hu,Xu‐Sha Wu,Yi Zhu,Yan Ren,Yi‐Bin Xi,Yan Zhou,Mengqiu Cao
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000003766
摘要

Purpose: To assess the feasibility of using multiparametric magnetic resonance imaging (MRI) to assess intratumor heterogeneity (ITH) for the noninvasive prediction of Ki-67 proliferation index (PI) and its prognostic significance in gliomas. Materials and Methods: This study included 205 patients with pathologically confirmed gliomas. Dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) were used to generate volume transfer constant (K trans ) and apparent diffusion coefficient (ADC) maps. A voxel-wise k-means clustering algorithm was applied to segment tumors into three biologically distinct intratumor habitats based on K trans and ADC values. Logistic regression and elastic net models were developed to predict Ki-67 PI. Model performance was validated through 10-fold cross-validation and two independent test cohorts, with diagnostic accuracy assessed by receiver operating characteristic (ROC) curves and area under the curve (AUC). The prognostic value of habitat-derived biomarkers for progression-free survival (PFS) and overall survival (OS) was evaluated using Kaplan–Meier analysis and Cox proportional hazards models. A composite risk score was calculated for patient stratification. Results: Three spatial habitats were identified: H1 (hypo-vasopermeability, hypo-cellularity habitat), H2 (hypo-vasopermeability, hyper-cellularity habitat), and H3 (hyper-vasopermeability habitat). The elastic net model demonstrated high predictive accuracy for Ki-67 PI, with AUCs of 0.924, 0.875, 0.881, and 0.869 in the training, cross-validation, and two test sets, respectively. Patients classified as high-risk by the risk score exhibited markedly shorter PFS (median 6.3 vs. 52.4 months) and OS (median 13.2 vs. 76.4 months) compared to low-risk patients. High-risk status was independently associated with poorer prognosis (PFS: HR = 4.338, 95% CI: 2.596–7.249; OS: HR = 4.471, 95% CI: 2.572–7.772; both P < 0.001). Conclusion: Multiparametric MRI-based habitat imaging effectively enables preoperative noninvasive prediction of Ki-67 expression and risk stratification in gliomas, with potential to offer insights into tumor biological behavior and inform individualized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39秒前
56秒前
1分钟前
蝶步韶华发布了新的文献求助10
1分钟前
sss完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
3分钟前
getDoc完成签到,获得积分10
3分钟前
HXY发布了新的文献求助10
3分钟前
白小黑发布了新的文献求助30
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
云无意发布了新的文献求助10
5分钟前
5分钟前
5分钟前
大溺完成签到 ,获得积分10
5分钟前
5分钟前
烟消云散发布了新的文献求助10
5分钟前
烟消云散发布了新的文献求助10
5分钟前
科研通AI2S应助东坡采纳,获得10
6分钟前
6分钟前
月影逝水完成签到,获得积分10
6分钟前
Frank完成签到 ,获得积分10
6分钟前
gzwhh发布了新的文献求助10
6分钟前
fyy完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
搜集达人应助gzwhh采纳,获得10
6分钟前
清秀的易文完成签到,获得积分10
6分钟前
TEMPO发布了新的文献求助10
6分钟前
机智元珊发布了新的文献求助10
6分钟前
乐乐应助Aisha采纳,获得10
6分钟前
机智元珊完成签到,获得积分10
6分钟前
6分钟前
7分钟前
郝佳语发布了新的文献求助10
7分钟前
7分钟前
范范完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714733
求助须知:如何正确求助?哪些是违规求助? 5226120
关于积分的说明 15273635
捐赠科研通 4865993
什么是DOI,文献DOI怎么找? 2612570
邀请新用户注册赠送积分活动 1562682
关于科研通互助平台的介绍 1519995