Metastatic progression is a major cause of radiotherapy (RT) failure, yet the mechanisms linking RT to immune suppression and metastasis remain unclear. Here, we identify YTHDF2 as a radiation-induced immune checkpoint in dendritic cells (DCs). By analyzing patient biopsies from a clinical trial (NCT03223155), we discover that increased YTHDF2 expression in DCs after RT correlates with treatment failure after RT. Mechanistically, ionizing radiation induces SPI1, which drives transcription of Ythdf2 in DCs. Upregulated YTHDF2 promotes m6A-mediated degradation of Notch pathway regulators (Mfng, Aph1b, Aph1c), impairing MHC-I cross-presentation and CD8+ T cell activation, thereby facilitating tumor immune evasion and metastatic spread. Crucially, targeting YTHDF2 restores DC immunogenicity, enhances RT-induced tumor control, and improves DC-based cancer vaccines when combined with RT, providing a clinically actionable strategy to overcome RT resistance and metastasis.