Fully context-aware image inpainting with a learned semantic pyramid

修补 先验概率 人工智能 计算机科学 棱锥(几何) 背景(考古学) 图像(数学) 推论 发电机(电路理论) 模式识别(心理学) 概率逻辑 计算机视觉 机器学习 贝叶斯概率 数学 古生物学 功率(物理) 物理 几何学 量子力学 生物
作者
Wendong Zhang,Yunbo Wang,Bingbing Ni,Xiaokang Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109741-109741 被引量:12
标识
DOI:10.1016/j.patcog.2023.109741
摘要

Restoring reasonable and realistic content for arbitrary missing regions in images is an important yet challenging task. Although recent image inpainting models have made significant progress in generating vivid visual details, they can still lead to texture blurring or structural distortions due to contextual ambiguity when dealing with more complex scenes. To address this issue, we propose the Semantic Pyramid Network (SPN) motivated by the idea that learning multi-scale semantic priors from specific pretext tasks can greatly benefit the recovery of locally missing content in images. SPN consists of two components. First, it distills semantic priors from a pretext model into a multi-scale feature pyramid, achieving a consistent understanding of the global context and local structures. Within the prior learner, we present an optional module for variational inference to realize probabilistic image inpainting driven by various learned priors. The second component of SPN is a fully context-aware image generator, which adaptively and progressively refines low-level visual representations at multiple scales with the (stochastic) prior pyramid. We train the prior learner and the image generator as a unified model without any post-processing. Our approach achieves the state of the art on multiple datasets, including Places2, Paris StreetView, CelebA, and CelebA-HQ, under both deterministic and probabilistic inpainting setups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浑灵安完成签到 ,获得积分10
1秒前
kiri完成签到,获得积分20
1秒前
负责月光完成签到,获得积分10
1秒前
1秒前
1秒前
东伯雪鹰发布了新的文献求助10
2秒前
CLF发布了新的文献求助10
2秒前
xiaoxiao发布了新的文献求助10
2秒前
3秒前
haonanchen发布了新的文献求助10
3秒前
完美世界应助穆妮热采纳,获得10
3秒前
王毅完成签到,获得积分10
4秒前
wanci应助傲娇白开水采纳,获得10
4秒前
twotonp发布了新的文献求助10
4秒前
5秒前
科研通AI5应助星期八采纳,获得10
5秒前
新野发布了新的文献求助10
5秒前
堂风完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
外向樱完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
终葵完成签到,获得积分10
9秒前
李梓权完成签到,获得积分10
9秒前
9秒前
大个应助123456qi采纳,获得10
10秒前
乐乐应助ggh采纳,获得10
10秒前
10秒前
李华关注了科研通微信公众号
10秒前
11秒前
李梓权发布了新的文献求助10
11秒前
李爱国应助twotonp采纳,获得10
11秒前
LULU发布了新的文献求助10
11秒前
灵巧妙芙发布了新的文献求助10
12秒前
香蕉觅云应助hahahayi采纳,获得10
13秒前
13秒前
司马三问完成签到,获得积分20
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846