RCFusion: Fusing 4-D Radar and Camera With Bird’s-Eye View Features for 3-D Object Detection

人工智能 计算机科学 雷达 计算机视觉 雷达成像 对象(语法) 目标检测 遥感 模式识别(心理学) 地理 电信
作者
Lianqing Zheng,Sen Li,Bin Tan,Long Yang,Sihan Chen,Libo Huang,Jie Bai,Xichan Zhu,Zhixiong Ma
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:47
标识
DOI:10.1109/tim.2023.3280525
摘要

Camera and millimeter-wave (MMW) radar fusion is essential for accurate and robust autonomous driving systems. With the advancement of radar technology, next-generation high-resolution automotive radar, i.e., 4D radar, has emerged. In addition to the target range, azimuth, and Doppler velocity measurements of traditional radar, 4D radar provides elevation measurement to create a denser "point cloud." In this study, we propose a camera and 4D radar fusion network called RCFusion, which achieves multimodal feature fusion under a unified bird's-eye view (BEV) space to accomplish 3D object detection tasks. In the camera stream, multi-scale feature maps are obtained by the image backbone and feature pyramid network; they are then converted into orthographic feature maps by an orthographic feature transform. Next, enhanced and fine-grained image BEV features are obtained via a designed shared attention encoder. Meanwhile, in the 4D radar stream, a newly designed component named Radar PillarNet efficiently encodes the radar features to generate radar pseudo-images, which are fed into the point cloud backbone to create radar BEV features. An interactive attention module is proposed for the fusion stage, which outputs a valid fusion of the two-modal BEV features. Finally, a generic detection head predicts the object classes and locations. The proposed RCFusion is validated on the TJ4DRadSet and View-of-Delft datasets. The experimental results and analysis show that the proposed method can effectively fuse camera and 4D radar features to achieve robust detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助SimonCHEN采纳,获得10
刚刚
刚刚
1秒前
xh完成签到,获得积分10
1秒前
djshao发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
ZJJ1230完成签到,获得积分10
4秒前
桐桐应助小魔鬼采纳,获得10
5秒前
changping应助菜鸟采纳,获得10
6秒前
6秒前
张世瑞发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
backerly完成签到,获得积分10
8秒前
yyqx发布了新的文献求助10
9秒前
pum完成签到,获得积分10
9秒前
英迪拉完成签到 ,获得积分10
10秒前
葡萄发布了新的文献求助10
10秒前
小只bb完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
L.完成签到,获得积分10
15秒前
尊敬的小熊猫完成签到,获得积分10
15秒前
16秒前
16秒前
小蘑菇应助小橘子采纳,获得10
16秒前
17秒前
单纯谷云完成签到,获得积分10
17秒前
王越完成签到,获得积分10
17秒前
sunny发布了新的文献求助30
17秒前
桐桐应助小丸子采纳,获得10
18秒前
zzz627发布了新的文献求助10
18秒前
韩可昕完成签到 ,获得积分10
19秒前
小魔鬼发布了新的文献求助10
19秒前
韩soso发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助50
20秒前
bobo发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075569
求助须知:如何正确求助?哪些是违规求助? 4295278
关于积分的说明 13384033
捐赠科研通 4116979
什么是DOI,文献DOI怎么找? 2254606
邀请新用户注册赠送积分活动 1259239
关于科研通互助平台的介绍 1192002