The effects of hyperparameters on deep learning of turbulent signals

物理 超参数 湍流 统计物理学 人工智能 机械 计算机科学
作者
Panagiotis Tirchas,Dimitris Drikakis,Ioannis W. Kokkinakis,S. Michael Spottswood
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12) 被引量:3
标识
DOI:10.1063/5.0245473
摘要

The effect of hyperparameter selection in deep learning (DL) models for fluid dynamics remains an open question in the current scientific literature. Many authors report results using deep learning models. However, better insight is required to assess deep learning models' behavior, particularly for complex datasets such as turbulent signals. This study presents a meticulous investigation of the long short-term memory (LSTM) hyperparameters, focusing specifically on applications involving predicting signals in shock turbulent boundary layer interaction. Unlike conventional methodologies that utilize automated optimization techniques, this research explores the intricacies and impact of manual adjustments to the deep learning model. The investigation includes the number of layers, neurons per layer, learning rate, dropout rate, and batch size to investigate their impact on the model's predictive accuracy and computational efficiency. The paper details the iterative tuning process through a series of experimental setups, highlighting how each parameter adjustment contributes to a deeper understanding of complex, time-series data. The findings emphasize the effectiveness of precise manual tuning in achieving superior model performance, providing valuable insights to researchers and practitioners who seek to leverage long short-term memory networks for intricate temporal data analysis. The optimization not only refines the predictability of the long short-term memory in specific contexts but also serves as a guide for similar manual tuning in other specialized domains, thereby informing the development of more effective deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chemj发布了新的文献求助10
1秒前
CC发布了新的文献求助10
2秒前
温柔梦曼发布了新的文献求助10
2秒前
wgw发布了新的文献求助10
3秒前
科研通AI6应助背后的念柏采纳,获得10
3秒前
喜悦的梦芝完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
勤奋未来发布了新的文献求助10
4秒前
6秒前
6秒前
一安完成签到,获得积分10
6秒前
6秒前
专注的冰巧完成签到,获得积分10
6秒前
8秒前
9秒前
xiaoxiao发布了新的文献求助10
10秒前
孤独又灿烂的夜猫子完成签到 ,获得积分10
10秒前
浮游应助grando采纳,获得10
11秒前
王荷一发布了新的文献求助10
11秒前
传奇3应助张张张采纳,获得10
12秒前
善学以致用应助端庄亦巧采纳,获得10
12秒前
CipherSage应助纳骨采纳,获得10
12秒前
BINGBING1230发布了新的文献求助10
13秒前
14秒前
123关闭了123文献求助
15秒前
Orange应助郇郇采纳,获得10
16秒前
kaik031419完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
18秒前
herococa应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
19秒前
herococa应助科研通管家采纳,获得10
19秒前
19秒前
Orange应助明理白开水采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074516
求助须知:如何正确求助?哪些是违规求助? 4294587
关于积分的说明 13381716
捐赠科研通 4115985
什么是DOI,文献DOI怎么找? 2254058
邀请新用户注册赠送积分活动 1258635
关于科研通互助平台的介绍 1191523