Integrating fault detection and classification in microgrids using supervised machine learning considering fault resistance uncertainty

计算机科学 可靠性(半导体) 支持向量机 断层(地质) 可靠性工程 故障检测与隔离 构造(python库) 方案(数学) 数据挖掘 机器学习 人工智能 工程类 地震学 执行机构 地质学 数学分析 功率(物理) 物理 数学 量子力学 程序设计语言
作者
Morteza Barkhi,Javad Poorhossein,Seyed Ali Hosseini
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-77982-7
摘要

Microgrids (MGs) can enhance the consumers' reliability. Nevertheless, besides significant outcomes, some challenges arise. Regarding the intermittent nature of Renewable Energy Resources (RESs), MGs are not operated radially. Accordingly, the reliable protection of MGs considering uncertainty in RESs is crucial for planners and operators. This paper uses data analysis to extract knowledge from locally available measurements using RMS values of symmetrical components. The learning-based characteristic of the suggested technique with a low computational burden exempts the need for an available communication infrastructure in the MG. The Support Vector Machine (SVM) technique is applied to train the Intelligent Electronic Devices to have a reliable MG protection scheme. The proposed method, which performs fault detection and classification together, just requires local information and functions effectively to discriminate faulty from normal conditions considering different uncertainty of resistance faults. Digital simulations on an MV test network were conducted to construct an appropriate database to consider some aspects of uncertainty in the network. The various faults considering their uncertainty, the different modes of operation, the uncertainty of RESs generation, and the load levels are combined to produce myriad scenarios. The simulation results confirm the effectiveness of the proposed adaptive protection approach in accurately distinguishing different system modes and consistently protecting the MG, achieving an accuracy rate of 99.75%. Furthermore, it offers the MG an optimal protection scheme that is not limited by selectivity constraints across diverse conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助oligo采纳,获得10
1秒前
橘络完成签到 ,获得积分10
1秒前
Jenny发布了新的文献求助10
2秒前
2秒前
2秒前
举个栗子8发布了新的文献求助10
3秒前
xjp发布了新的文献求助10
3秒前
4秒前
可爱的函函应助灰灰喵采纳,获得10
4秒前
nyddyy发布了新的文献求助30
5秒前
你好完成签到,获得积分10
5秒前
6秒前
sunce1990完成签到 ,获得积分10
7秒前
HMS完成签到 ,获得积分10
7秒前
JianYugen完成签到,获得积分0
7秒前
8秒前
机灵饼干发布了新的文献求助30
9秒前
xjp发布了新的文献求助10
11秒前
smart完成签到,获得积分10
11秒前
大模型应助断绝的采纳,获得10
12秒前
Jenny完成签到,获得积分10
12秒前
13秒前
zyfqpc完成签到,获得积分10
14秒前
香蕉芷蕾发布了新的文献求助10
15秒前
为你博弈完成签到,获得积分10
16秒前
16秒前
木木完成签到 ,获得积分10
16秒前
花蕊完成签到,获得积分10
16秒前
Wakeupsn完成签到,获得积分10
16秒前
17秒前
维尼完成签到,获得积分10
17秒前
17秒前
view发布了新的文献求助10
17秒前
滚去学习完成签到,获得积分10
17秒前
化学兔八哥完成签到,获得积分10
18秒前
星辰大海应助xjp采纳,获得10
18秒前
18秒前
Gluneko完成签到,获得积分10
19秒前
健壮的忆丹完成签到,获得积分20
19秒前
Orange应助妮妮采纳,获得10
19秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606