亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent fault diagnosis of high-speed train axle box bearings under parameter fluctuation working conditions using continuous cohomology-based meta-transfer learning framework

断层(地质) 传输(计算) 学习迁移 计算机科学 机械工程 控制工程 工程类 人工智能 地质学 并行计算 地震学
作者
Yang Li,Xiangyin Meng,Feiyun Xu,Shide Xiao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:25 (1): 393-412
标识
DOI:10.1177/14759217241293702
摘要

Due to the challenges associated with acquiring fault data from high-speed train axle box bearings operating under parameter fluctuation working conditions, the diagnostic accuracy of data-driven fault diagnosis methods often suffers from insufficient fault information. To address this issue, we propose an intelligent fault diagnosis strategy utilizing a novel continuous cohomology-based meta-transfer learning (CCMTL) framework. This approach aims to enhance fault identification accuracy by developing comprehensive feature representations despite limited data availability. Initially, acoustic emission data are transformed into a barcode chart using the continuous cohomology mechanism, from which fault topology features are derived. Subsequently, these features are input into a specially designed meta-transfer model for multi-task learning, thus forming a pre-trained model. This pre-training model undergoes further refinement both externally and internally to optimize its ability to adapt quickly to few-shot tasks. According to carry out the abovementioned steps, the proposed method can effectively overcome the challenges (e.g., data scarcity, difficulty in fault feature extraction, low robustness, and generalization ability) in the fault diagnosis of high-speed train axle box bearings under parameter fluctuation working conditions. Compared with existing fault diagnosis methods, the proposed CCMTL algorithm has three obvious advantages: (1) improve the fault diagnosis robustness of high-speed train axle box bearings, (2) reduce the cost of data annotation, and (3) adapt to a wide range of working conditions and parameter fluctuations. Experimental findings validate the effectiveness and feasibility of the proposed approach in scenarios requiring few-shot fault diagnosis. Specifically, when compared with current advanced diagnostic methods, the CCMTL method demonstrates superior diagnostic accuracy for fault diagnosis in high-speed train axle box bearings under parameter fluctuation working conditions. In conclusion, the practicality and generalization ability of the proposed CCMTL-based fault diagnosis approach are thoroughly demonstrated through comprehensive ablation studies. On the other hand, the designed CCMTL framework is not limited to specific machinery or operational conditions. With proper training and adjustments, the model can be applied to other industrial equipment with similar fault patterns and data characteristics. In summary, although this article emphasizes a specific application scenario (e.g., parameter fluctuation working conditions), the proposed method possesses broad applicability and can be extended to other similar industrial fault diagnosis tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
CodeCraft应助老不靠谱采纳,获得10
10秒前
卡耐基发布了新的文献求助10
16秒前
卡耐基完成签到,获得积分10
25秒前
taysun发布了新的文献求助10
35秒前
NexusExplorer应助纳米大亨采纳,获得10
37秒前
39秒前
50秒前
量子星尘发布了新的文献求助10
56秒前
CHAUSU完成签到,获得积分10
1分钟前
旧月完成签到 ,获得积分10
1分钟前
旧月关注了科研通微信公众号
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
willlee完成签到 ,获得积分10
2分钟前
2分钟前
LIJinlin完成签到,获得积分10
2分钟前
雪白傲薇完成签到 ,获得积分10
2分钟前
LIJinlin发布了新的文献求助10
2分钟前
扯扯完成签到,获得积分20
2分钟前
2分钟前
讨厌水煮蛋完成签到,获得积分10
2分钟前
2分钟前
2分钟前
扯扯发布了新的文献求助10
2分钟前
liuliu发布了新的文献求助10
2分钟前
讨厌水煮蛋发布了新的文献求助100
2分钟前
555完成签到,获得积分10
2分钟前
2分钟前
sera发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432