Intelligent fault diagnosis of high-speed train axle box bearings under parameter fluctuation working conditions using continuous cohomology-based meta-transfer learning framework

断层(地质) 传输(计算) 学习迁移 计算机科学 机械工程 控制工程 工程类 人工智能 地质学 并行计算 地震学
作者
Yang Li,Xiangyin Meng,Feiyun Xu,Shide Xiao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241293702
摘要

Due to the challenges associated with acquiring fault data from high-speed train axle box bearings operating under parameter fluctuation working conditions, the diagnostic accuracy of data-driven fault diagnosis methods often suffers from insufficient fault information. To address this issue, we propose an intelligent fault diagnosis strategy utilizing a novel continuous cohomology-based meta-transfer learning (CCMTL) framework. This approach aims to enhance fault identification accuracy by developing comprehensive feature representations despite limited data availability. Initially, acoustic emission data are transformed into a barcode chart using the continuous cohomology mechanism, from which fault topology features are derived. Subsequently, these features are input into a specially designed meta-transfer model for multi-task learning, thus forming a pre-trained model. This pre-training model undergoes further refinement both externally and internally to optimize its ability to adapt quickly to few-shot tasks. According to carry out the abovementioned steps, the proposed method can effectively overcome the challenges (e.g., data scarcity, difficulty in fault feature extraction, low robustness, and generalization ability) in the fault diagnosis of high-speed train axle box bearings under parameter fluctuation working conditions. Compared with existing fault diagnosis methods, the proposed CCMTL algorithm has three obvious advantages: (1) improve the fault diagnosis robustness of high-speed train axle box bearings, (2) reduce the cost of data annotation, and (3) adapt to a wide range of working conditions and parameter fluctuations. Experimental findings validate the effectiveness and feasibility of the proposed approach in scenarios requiring few-shot fault diagnosis. Specifically, when compared with current advanced diagnostic methods, the CCMTL method demonstrates superior diagnostic accuracy for fault diagnosis in high-speed train axle box bearings under parameter fluctuation working conditions. In conclusion, the practicality and generalization ability of the proposed CCMTL-based fault diagnosis approach are thoroughly demonstrated through comprehensive ablation studies. On the other hand, the designed CCMTL framework is not limited to specific machinery or operational conditions. With proper training and adjustments, the model can be applied to other industrial equipment with similar fault patterns and data characteristics. In summary, although this article emphasizes a specific application scenario (e.g., parameter fluctuation working conditions), the proposed method possesses broad applicability and can be extended to other similar industrial fault diagnosis tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助学术学习采纳,获得10
4秒前
从容飞阳完成签到,获得积分10
4秒前
小芳芳发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
Jupiter 1234完成签到,获得积分20
6秒前
7秒前
甜美的芷完成签到,获得积分10
7秒前
WJZ完成签到 ,获得积分10
8秒前
Shirley完成签到,获得积分10
9秒前
菜菜完成签到 ,获得积分10
10秒前
xiewuhua完成签到,获得积分10
10秒前
甜美的芷发布了新的文献求助10
11秒前
wertyu发布了新的文献求助30
14秒前
14秒前
科研通AI2S应助玩命的芝麻采纳,获得10
14秒前
15秒前
16秒前
16秒前
16秒前
16秒前
学术学习发布了新的文献求助10
19秒前
昏睡的跳跳糖完成签到,获得积分10
19秒前
20秒前
xu发布了新的文献求助30
20秒前
量子星尘发布了新的文献求助10
20秒前
yif发布了新的文献求助10
20秒前
简单花花完成签到,获得积分10
20秒前
研友_VZG7GZ应助雪白代珊采纳,获得10
20秒前
20秒前
21秒前
沉静的笑槐完成签到,获得积分10
21秒前
NexusExplorer应助单手开坦克采纳,获得10
23秒前
呵呵发布了新的文献求助10
24秒前
yyf完成签到,获得积分10
25秒前
可爱的函函应助小芳芳采纳,获得10
26秒前
wangzheng完成签到,获得积分10
26秒前
Cassie完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Literature and Art as Cognitive Objects 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4672996
求助须知:如何正确求助?哪些是违规求助? 4051634
关于积分的说明 12529671
捐赠科研通 3745271
什么是DOI,文献DOI怎么找? 2068437
邀请新用户注册赠送积分活动 1097743
科研通“疑难数据库(出版商)”最低求助积分说明 977948