Infrared and visible image fusion method based on fractional-order differentiation

图像融合 融合规则 低频 标准差 转化(遗传学) 融合 频带 空间频率 反向 无线电频谱 数学 人工智能 计算机科学 模式识别(心理学) 算法 图像(数学) 光学 物理 电信 统计 哲学 基因 化学 生物化学 带宽(计算) 语言学 几何学
作者
Meili Li,Nan Gao
标识
DOI:10.1117/12.3055860
摘要

In order to solve the problems of information loss in image fusion, an infrared and visible image fusion method based on fractional-order differentiation is proposed. Firstly, the multi-scale transform is used to decompose the source images into low frequency and high frequency subbands, and the low frequency subbands are further decomposed into low frequency basic subbands and low frequency detail subbands by two-scale decomposition. Secondly, for the low frequency base subbands, the weighted sum of energy ratio and standard deviation ratio is used to construct the judgment value which is used to fuse low frequency base subbands. For low frequency detail subbands and high frequency subbands, the fractional-order differentiation is introduced, and the fusion rule of maximum fractional-order sum of modified laplacian is adopted. Finally, the fused low-frequency basic subband and low-frequency detail subband are transformed by two-scale inverse transformation to obtain the fused low-frequency subband. the multi-scale inverse transformation is performed to the fused low frequency subband and high frequency subbands to obtain the fused image. Three groups of infrared and visible images are selected to verify the effectiveness of the proposed algorithm. From the subjective assessments, the proposed method highlights the infrared target well, retains the details of the visible image and texture details, and achieves a good visual effect. From the objective assessments, the entropy, standard deviation, spatial frequency and mean gradient of the fusion method in this paper are higher than the other five methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强觅珍完成签到 ,获得积分10
1秒前
1秒前
3秒前
鸭鸭完成签到 ,获得积分10
3秒前
ding应助cdgbdfbsfdvsd采纳,获得30
3秒前
4秒前
zychaos发布了新的文献求助30
6秒前
YMY完成签到,获得积分10
6秒前
oleskarabach发布了新的文献求助10
7秒前
Yong完成签到,获得积分10
8秒前
沙代云完成签到,获得积分10
8秒前
9秒前
沉默凡梦完成签到,获得积分10
9秒前
rachel03发布了新的文献求助30
10秒前
Ava应助林林采纳,获得10
12秒前
开心千青完成签到,获得积分10
12秒前
13秒前
你也喜欢小狗吗完成签到,获得积分10
13秒前
NexusExplorer应助月亮上的猫采纳,获得10
14秒前
magickou完成签到,获得积分10
15秒前
15秒前
逆时针应助gbw123采纳,获得10
16秒前
Lumos完成签到,获得积分10
16秒前
笑点低的铁身完成签到 ,获得积分10
16秒前
善学以致用应助狗十七采纳,获得10
16秒前
16秒前
顾矜应助博修采纳,获得10
17秒前
17秒前
LELE发布了新的文献求助10
18秒前
18秒前
上官若男应助木子采纳,获得10
18秒前
雪兔妹妹发布了新的文献求助10
19秒前
20秒前
伊小美完成签到,获得积分10
20秒前
eso完成签到,获得积分10
20秒前
别闹闹发布了新的文献求助10
20秒前
20秒前
huahuaoeds发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149