Novel Spiking Neural Network Model for Gear Fault Diagnosis

尖峰神经网络 人工神经网络 断层(地质) 过程(计算) 计算机科学 特征提取 图形用户界面 人工智能 故障检测与隔离 专家系统 声发射 模式识别(心理学) 工程类 机器学习 地震学 执行机构 程序设计语言 地质学 操作系统 材料科学 复合材料
作者
Yasir Hassan Ali,Falah Y. H. Ahmed,Ahmed M. Abdelrhman,Salah Mahdi Ali,Abdoulhdi A. Borhana,Raja Ishak Raja Hamzah
标识
DOI:10.1109/esmarta56775.2022.9935414
摘要

Gearbox is an important component in machine system. Hence, it is important to predict and maintain the performance of the gear system, since any unpredictable failure in this system can seriously threaten human lives and cause significant economic losses. Therefore, it is essential to inspect the gear teeth at regular intervals for identifying the crack propagation or other damages affecting the system in advance at the early stage. In this study, a new method have been proposed by the researchers which utilized artificial intelligence processes for routine maintenance. A new 3rd generation Artificial Neural Network (ANN) has been used for diagnosing and classifying the faults occurring in the spur gear systems based on the Acoustic Emission (AE) signals. Hence, they developed a test rig with various seeded gear faults, which later processed the acquired AE signals by utilizing the pre-processing technique based on the Slantlet Transform (SLT), feature extraction and Information Gain (IG) processes. These processes were used before the use of a feature selection technique which was used for developing the Spiking Neural Network (SNN) diagnosis and classification model. These processes were run using a Graphical User Interface (GUI) for fault diagnosis and classification of spur gears. Results of the study showed that this process could improve the accuracy of the diagnosis system depending on the features and information which was fed to the model. In this study, the researchers investigated the probability of increasing the accuracy better for the spur gear fault diagnosis with the help of the Spiking Neural Network (SNN) process. They achieved an accuracy of ≥95% when using SNN. Finally, it was concluded that the proposed technique was as an effective tool for diagnosing and classifying the faults identified in the spur gears.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸡致大王发布了新的文献求助20
刚刚
pjwl完成签到,获得积分10
1秒前
脑洞疼应助runner采纳,获得10
1秒前
干净馒头完成签到,获得积分10
1秒前
可爱的函函应助社恐小魏采纳,获得10
1秒前
小何0404完成签到,获得积分10
2秒前
orixero应助大气问枫采纳,获得10
2秒前
3秒前
3秒前
Nacy发布了新的文献求助10
3秒前
柴柴子完成签到,获得积分10
3秒前
思源应助小贝采纳,获得10
3秒前
柒z发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
动听又槐完成签到,获得积分20
8秒前
DAYE发布了新的文献求助10
8秒前
傲娇黑夜发布了新的文献求助10
8秒前
9秒前
9秒前
开朗的觅柔完成签到,获得积分10
10秒前
11秒前
无情秋玲发布了新的文献求助30
11秒前
瑾风阳完成签到,获得积分10
12秒前
柏觅云完成签到,获得积分20
12秒前
smilence发布了新的文献求助10
12秒前
xzl发布了新的文献求助10
12秒前
12秒前
13秒前
华仔应助mochi采纳,获得10
14秒前
乐乐应助Flanker采纳,获得10
14秒前
wsq完成签到,获得积分10
15秒前
社恐小魏发布了新的文献求助10
15秒前
souvenir关注了科研通微信公众号
15秒前
16秒前
林子青完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794234
求助须知:如何正确求助?哪些是违规求助? 3339125
关于积分的说明 10294117
捐赠科研通 3055695
什么是DOI,文献DOI怎么找? 1676766
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762051