亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Increasing Ammonia Formation Rates of Li-Mediated Ammonia Synthesis with High Surface Area Copper Electrodes

氨生产 电化学 法拉第效率 化学 电解质 无机化学 人口 化学工程 电极 有机化学 工程类 社会学 物理化学 人口学
作者
Katja Li,Shaofeng Li,Yuanyuan Zhou,Suzanne Z. Andersen,Mattia Saccoccio,Rokas Sažinas,Jakob B. Pedersen,Xianbiao Fu,Debasish Chakraborty,Peter C. K. Vesborg,Jakob Kibsgaard,Jens K. Nørskov,Ib Chorkendorff
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (49): 1930-1930
标识
DOI:10.1149/ma2022-02491930mtgabs
摘要

The Haber-Bosch process, which industrially produces ammonia, is one of the most important inventions of the 20 th century. It is argued that without the ability to mass produce ammonia and therefore fertilizer, we would not be able to feed half of the current population. However, the Haber-Bosch process is harmful to the environment as it runs at high pressures and temperatures and is therefore very energy intensive. Furthermore, it utilizes H2 from steam reforming which causes large CO 2 emissions. To mitigate the environmental strain of the Haber-Bosch process, electrochemical ammonia synthesis from renewable electricity sources would be an alternative, however the large activation barrier for dinitrogen splitting and the competition of hydrogen evolution reaction (HER) makes the electrochemical nitrogen reduction very difficult. ( 1 ) As of now, only the Li-mediated ammonia synthesis has been successfully proven by several labs to consistently produce ammonia at rates and faradaic efficiencies that could be industrially relevant. The exact mechanism is yet to be elucidated but it widely accepted that the first step is electrochemical plating of metallic Li from Li + ions. The freshly plated Li metal is very reactive and is then believed to react with N 2 in the electrolyte which produces an intermediate Li-N species. Lastly, ammonia is being formed by protonation of this Li-N species ( 2 ). Recent breakthroughs in the field managed to push the faradaic efficiencies to 78 %, however that was achieved at low current densities of -4 mA/cm 2 ( 3 ). To make the process industrially relevant the current densities and therefore ammonia formation rates need to be increased significantly. The Department of Energy has stated in their REFUEL program a goal of 300 mA/cm 2 at faradaic efficiencies of 90 % ( 4 ). In our latest publication, we have reached current densities of -100 mA/cm 2 with high surface area Cu electrodes, however at relatively low faradaic efficiencies of 13 %. To synthesize the high surface area Cu electrodes we used the hydrogen bubble templating procedure that deposits metals at high overpotentials where the competing HER makes a templating structure and forms porous metal foams. We have further improved upon the deposition method by changing the substrate, which not only increased the physical stability but also the electrochemical performance. By varying the deposition conditions and optimizing the electrolyte for ammonia synthesis, we achieved a current density of -1 A/cm 2 and high faradaic efficiencies of 75 %. The increase in faradaic efficiency is speculated to be due to changes in the solid electrolyte interface (SEI) layer, which we probe with X-ray photoelectron spectroscopy with the help of our in-house build transfer system that limits contact to air and moisture. The results are supported by theoretical models that calculate the Li + conductivity of different constituents of the SEI layer. J. Kibsgaard, J. K. Nørskov, I. Chorkendorff, The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Lett. 4 , 2986–2988 (2019). N. Lazouski, Z. J. Schiffer, K. Williams, K. Manthiram, Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction. Joule . 3 , 1127–1139 (2019). K. Li, S. Z. Andersen, M. J. Statt, M. Saccoccio, V. J. Bukas, K. Krempl, R. Sažinas, J. B. Pedersen, V. Shadravan, Y. Zhou, D. Chakraborty, J. Kibsgaard, P. C. K. Vesborg, J. K. Nørskov, I. Chorkendorff, Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science (6575). 374 , 1593–1597 (2021). G. Soloveichik, in 2019 AIChE Annual Meeting: Topical Conference - Ammonia Energy (AIChE, 2019).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
24秒前
haoqingyun发布了新的文献求助10
28秒前
hanwei_mei发布了新的文献求助10
28秒前
32秒前
34秒前
hanwei_mei完成签到,获得积分10
40秒前
haoqingyun发布了新的文献求助10
57秒前
CodeCraft应助腼腆的月亮采纳,获得10
59秒前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助wuran采纳,获得10
1分钟前
haoqingyun完成签到,获得积分10
1分钟前
搔扒完成签到,获得积分10
1分钟前
大熊完成签到 ,获得积分10
1分钟前
sy完成签到 ,获得积分10
2分钟前
情怀应助安详的面包采纳,获得10
2分钟前
qqq完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
远方完成签到,获得积分10
3分钟前
浮游应助wuran采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
佳佳发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Akim应助佳佳采纳,获得10
5分钟前
5分钟前
NexusExplorer应助huaixup采纳,获得10
5分钟前
5分钟前
佳佳发布了新的文献求助10
5分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585