Parameter optimization of energy-efficient antenna system using period-based memetic algorithm

模因算法 计算机科学 差异进化 天线(收音机) 算法 数学优化 局部搜索(优化) 数学 电信
作者
Zhou Wu,Mingyuan Yu,Jing Liang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 119131-119131 被引量:5
标识
DOI:10.1016/j.eswa.2022.119131
摘要

Antenna systems play a key role both in today's 5G or future 6G communication networks because they can convert electrical energy directly into electromagnetic waves. However, due to the imprecise antenna models, electrical energy loss is inevitable and enormous in the whole network. Therefore, the energy efficiency optimization of antenna models becomes extremely urgent by accurately estimating their parameters. In this paper, to reduce the energy loss in transmission, a novel period-based memetic algorithm (MA) framework is developed to improve the energy-saving efficiency of antenna models. A popular neighborhood field search (NFS) and a state-of-the-art differential evolution (DE), as a local optimizer and a global optimizer, respectively, are embedded into the MA framework for an instantiation, referred to as MDE-NFS. In the proposed MDE-NFS algorithm, a periodic switching-based scheme is studied to strike a balance between global exploration and local exploitation. To verify the performance of MDE-NFS, it is applied to parameter optimization of two different antenna models, including the microstrip antenna model and the Yagi–Uda antenna model. Moreover, MDE-NFS is also specifically compared with other algorithms on several numerical test sets. The comprehensively experimental results demonstrate that the MDE-NFS is promising to be a candidate parameter optimization approach to design energy-efficient antenna models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马嘎嘎发布了新的文献求助10
刚刚
科研通AI5应助愤怒的雨莲采纳,获得10
1秒前
辞璟完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
4秒前
共享精神应助迷人火龙果采纳,获得10
5秒前
东阳发布了新的文献求助10
5秒前
7秒前
8秒前
Asuka发布了新的文献求助10
8秒前
自信向梦发布了新的文献求助10
9秒前
luosu发布了新的文献求助10
10秒前
10秒前
10秒前
高高ai发布了新的文献求助10
10秒前
科研通AI5应助木木木采纳,获得10
11秒前
Akim应助机智毛豆采纳,获得10
11秒前
A市觅食高手完成签到,获得积分10
11秒前
11秒前
深情安青应助yxy采纳,获得10
12秒前
14秒前
14秒前
卋罖完成签到,获得积分10
14秒前
14秒前
我是老大应助TianyuYu采纳,获得10
15秒前
123发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
科研通AI2S应助高高ai采纳,获得10
17秒前
17秒前
18秒前
18秒前
鱼鱼鱼发布了新的文献求助10
19秒前
任乐乐发布了新的文献求助10
19秒前
20秒前
yuekun完成签到,获得积分10
21秒前
上官若男应助lonely采纳,获得10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811134
求助须知:如何正确求助?哪些是违规求助? 3355447
关于积分的说明 10376297
捐赠科研通 3072298
什么是DOI,文献DOI怎么找? 1687391
邀请新用户注册赠送积分活动 811595
科研通“疑难数据库(出版商)”最低求助积分说明 766700