Machine Learning Prediction of the Experimental Transition Temperature of Fe(II) Spin-Crossover Complexes

旋转交叉 渡线 凝聚态物理 自旋(空气动力学) 材料科学 化学物理 物理 统计物理学 热力学 人工智能 计算机科学
作者
Vyshnavi Vennelakanti,Irem B. Kilic,Gianmarco Terrones,Chenru Duan,Heather J. Kulik
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:128 (1): 204-216 被引量:12
标识
DOI:10.1021/acs.jpca.3c07104
摘要

Spin-crossover (SCO) complexes are materials that exhibit changes in the spin state in response to external stimuli, with potential applications in molecular electronics. It is challenging to know a priori how to design ligands to achieve the delicate balance of entropic and enthalpic contributions needed to tailor a transition temperature close to room temperature. We leverage the SCO complexes from the previously curated SCO-95 data set [Vennelakanti et al. J. Chem. Phys. 159, 024120 (2023)] to train three machine learning (ML) models for transition temperature (T1/2) prediction using graph-based revised autocorrelations as features. We perform feature selection using random forest-ranked recursive feature addition (RF-RFA) to identify the features essential to model transferability. Of the ML models considered, the full feature set RF and recursive feature addition RF models perform best, achieving moderate correlation to experimental T1/2 values. We then compare ML T1/2 predictions to those from three previously identified best-performing density functional approximations (DFAs) which accurately predict SCO behavior across SCO-95, finding that the ML models predict T1/2 more accurately than the best-performing DFAs. In addition, we study ML model predictions for a set of 18 SCO complexes for which only estimated T1/2 values are available. Upon excluding outliers from this set, the RF-RFA RF model shows a strong correlation to estimated T1/2 values with a Pearson's r of 0.82. In contrast, DFA-predicted T1/2 values have large errors and show no correlation to estimated T1/2 values over the same set of complexes. Overall, our study demonstrates slightly superior performance of ML models in comparison with some of the best-performing DFAs, and we expect ML models to improve further as larger data sets of SCO complexes are curated and become available for model training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娟娟完成签到 ,获得积分10
5秒前
gxzsdf完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
纪言七许完成签到 ,获得积分10
10秒前
一只橘子完成签到 ,获得积分10
12秒前
彭于晏应助bxj351885172采纳,获得10
12秒前
20250702完成签到 ,获得积分10
18秒前
wwwwwl完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
绿色猫猫头完成签到 ,获得积分10
19秒前
Brenda完成签到,获得积分10
22秒前
无辜的行云完成签到 ,获得积分0
23秒前
mark33442完成签到,获得积分10
25秒前
萌萌完成签到 ,获得积分10
27秒前
安戈完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
39秒前
houxy完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
50秒前
hute完成签到 ,获得积分10
57秒前
58秒前
maclogos完成签到,获得积分10
58秒前
可爱可愁完成签到,获得积分10
58秒前
1分钟前
1分钟前
hxz完成签到 ,获得积分10
1分钟前
听风挽完成签到 ,获得积分10
1分钟前
爱吃蓝莓果完成签到,获得积分10
1分钟前
李健应助玉潭湖水怪采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
不劳而获完成签到 ,获得积分10
1分钟前
tranphucthinh发布了新的文献求助10
1分钟前
洁净孤丹关注了科研通微信公众号
1分钟前
1分钟前
加油少年完成签到,获得积分10
1分钟前
小鱼完成签到 ,获得积分10
1分钟前
zyb完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
桢桢树完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549605
求助须知:如何正确求助?哪些是违规求助? 4634807
关于积分的说明 14635161
捐赠科研通 4576367
什么是DOI,文献DOI怎么找? 2509739
邀请新用户注册赠送积分活动 1485528
关于科研通互助平台的介绍 1456859