A hybrid modeling method of fatigue crack growth for gas turbine blades under combined high and low cycle fatigue loadings

结构工程 巴黎法 断裂力学 强度因子 涡轮叶片 振动疲劳 有限元法 应力集中 裂缝闭合 材料科学 机械 涡轮机 工程类 机械工程 物理
作者
Shixi Yang,Qinni Huang,Xiwen Gu,Jibing Lan,Yongfeng Sui
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:238 (11): 5216-5226 被引量:2
标识
DOI:10.1177/09544062231216278
摘要

Fatigue crack is one of the major faults of the gas turbine blades. Previous modeling studies on fatigue crack growth of blades mainly focus on a single numerical or analytical approach considering different sizes of cracks under various fatigue loadings. However, the actual crack propagation process is time-varying. The iteration and update of the model are necessary to evaluate the fatigue life of blades precisely. This paper proposes a hybrid modeling method to study blade crack growth under combined high and low cycle fatigue (CCF) loadings. The method emphasizes the combination and interaction between the finite element (FE) numerical simulation and the analytical calculation based on the fracture mechanics model. The current crack propagation length of the blade FE model is calculated from the crack growth rate obtained by the stress intensity factor (SIF) range according to Paris law. Then, a new SIF range is resolved from the FE model with the updated crack length. The proposed method is verified by the first-stage compressor blade from an in-service gas turbine. Results show that the crack growth is faster using the proposed hybrid modeling method than the traditional method. The update of the SIF range under CCF loadings cannot be ignored when predicting the fatigue life of the blade. Also, a sensitivity analysis is carried out. Suggestions are given on how to set the crack extension length at each stage during modeling, especially when the blade approaches failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
perseverance发布了新的文献求助10
1秒前
2秒前
沈家宁发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
漂亮白云完成签到 ,获得积分10
5秒前
于七发布了新的文献求助10
6秒前
8秒前
9秒前
李堃发布了新的文献求助30
9秒前
星辰大海应助WFLLL采纳,获得10
10秒前
10秒前
芒果好高完成签到,获得积分10
11秒前
11秒前
穆一手完成签到 ,获得积分10
11秒前
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
若有光发布了新的文献求助10
12秒前
jiwen发布了新的文献求助10
15秒前
李爱国应助光亮的依凝采纳,获得10
16秒前
若有光完成签到,获得积分10
18秒前
义气的访波完成签到 ,获得积分10
18秒前
18秒前
lalala完成签到,获得积分10
18秒前
19秒前
动漫大师发布了新的文献求助10
19秒前
罗布林卡发布了新的文献求助10
20秒前
21秒前
22秒前
科研通AI5应助科研大白采纳,获得10
22秒前
25秒前
26秒前
jiwen完成签到,获得积分10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133