Whole-orbit radiomics: machine learning-based multi- and fused- region radiomics signatures for intravenous glucocorticoid response prediction in thyroid eye disease

磁共振成像 分割 计算机科学 人工智能 轨道(动力学) 医学 无线电技术 算法 核医学 机器学习 放射科 工程类 航空航天工程
作者
Haiyang Zhang,Mengda Jiang,Hoi Chi Chan,Huijie Zhang,Jiashuo Xu,Yuting Liu,Ling Zhu,Xiaofeng Tao,Duojin Xia,Lei Zhou,Yinwei Li,Jing Sun,Xuefei Song,Huifang Zhou,Xianqun Fan
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1) 被引量:9
标识
DOI:10.1186/s12967-023-04792-2
摘要

Abstract Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. Methods In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. Results The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions. Conclusions The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周奥金发布了新的文献求助30
1秒前
Zoo应助脆皮小小酥采纳,获得20
1秒前
哈基米德应助鱼鱼采纳,获得20
1秒前
苗苗发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
3秒前
4秒前
飞云完成签到,获得积分10
4秒前
小夭发布了新的文献求助10
5秒前
Ava应助我的麦子熟了采纳,获得10
6秒前
自由山槐发布了新的文献求助10
6秒前
6秒前
jrzsy完成签到,获得积分10
7秒前
慈祥的鲂应助干饭啦采纳,获得10
7秒前
学术垃圾发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
大个应助123采纳,获得30
9秒前
Aman发布了新的文献求助10
9秒前
suiyi完成签到,获得积分10
9秒前
11秒前
zhengzehong完成签到,获得积分10
11秒前
11秒前
12秒前
suiyi发布了新的文献求助10
12秒前
liu完成签到 ,获得积分10
13秒前
14秒前
jokerhoney发布了新的文献求助20
14秒前
学术垃圾完成签到,获得积分10
15秒前
顾右完成签到,获得积分10
15秒前
斯文败类应助GYH采纳,获得10
17秒前
Linica发布了新的文献求助10
17秒前
19秒前
19秒前
小夭完成签到,获得积分10
19秒前
森林完成签到 ,获得积分10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4083563
求助须知:如何正确求助?哪些是违规求助? 3622840
关于积分的说明 11492863
捐赠科研通 3337531
什么是DOI,文献DOI怎么找? 1834841
邀请新用户注册赠送积分活动 903560
科研通“疑难数据库(出版商)”最低求助积分说明 821705