Synchronized achieving amount reduction and efficiency increase of lithium salt-type additive by alternating current pulse discharge technology

电解质 锂(药物) 石墨 电化学 分解 阳极 材料科学 限制电流 扩散 化学工程 电极 纳米技术 化学 工程类 医学 有机化学 热力学 物理 内分泌学 物理化学
作者
Shiyou Li,Yulong Zhang,Shumin Wu,Yin Quan,Meiling Wu,Peng Wang,Dongni Zhao,Xiaoling Cui
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:485: 150095-150095 被引量:22
标识
DOI:10.1016/j.cej.2024.150095
摘要

Lithium bis(oxalate)borate (LiBOB) is well known for its protection of graphite anodes in lithium-ion batteries (LIBs) by forming a passivated solid electrolyte interface (SEI) layer. However, the underlying film-formation mechanism of LiBOB remains poorly understood, thereby its utilization efficiency has received little attention. In this work, we resort to in situ techniques to determine the crux of limiting the complete decomposition of LiBOB during the initial SEI formation lies in the BOB-derived soluble products which accumulate on the graphite surface and hinder its subsequent sustained decomposition. Then alternating current pulse (AC) discharge technology is employed to promote the self-decomposition of LiBOB. The complementation results of electrochemical/physical characterizations and theoretical calculations reveal that AC not only facilitates the diffusion of soluble products, but also promotes the synergy reaction of the soluble products with LiPF6, generating a smooth and uniform SEI rich in inorganics (LiF and LixPOyFz) and B-containing cross-linking polymers. More significantly, a thinner SEI is obtained in AC by reducing the LiBOB amount in half. The as-resulted cell exhibits higher rate performance (280 mAh g−1 at 2 C) and better cycling stability (320 mAh g−1 after 200 cycles at 1 C, 98 % capacity retention), synchronously achieving "amount reduction and efficiency increase" of expensive additives. This study provides an entirely novel method for reinforcing the SEI films using external electric fields, and enriches the strategies for improving the performance of LIBs via interfacial engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HRB发布了新的文献求助10
刚刚
小西贝完成签到 ,获得积分10
刚刚
甜橙完成签到 ,获得积分10
刚刚
大气小天鹅完成签到 ,获得积分10
刚刚
1秒前
yin完成签到,获得积分10
1秒前
宇老师完成签到,获得积分10
1秒前
现代半山完成签到 ,获得积分10
1秒前
帅气的机器猫完成签到 ,获得积分10
2秒前
2秒前
刘泽民发布了新的文献求助10
2秒前
石建国完成签到,获得积分10
5秒前
川上富江完成签到 ,获得积分10
6秒前
lr应助jeronimo采纳,获得10
6秒前
夏天完成签到,获得积分10
7秒前
sq发布了新的文献求助10
7秒前
Fengzhen007完成签到,获得积分10
8秒前
Ouou完成签到 ,获得积分10
8秒前
健壮的鸽子完成签到,获得积分10
8秒前
L丶完成签到,获得积分10
8秒前
目眩发布了新的文献求助10
9秒前
寒冷南晴完成签到,获得积分10
9秒前
在水一方应助ATOM采纳,获得10
9秒前
MozzieMiao完成签到 ,获得积分10
10秒前
zzzxhhr完成签到,获得积分10
12秒前
小刘爱科研完成签到,获得积分10
13秒前
化渣完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Hoodie完成签到,获得积分10
14秒前
科研通AI6应助春国采纳,获得10
14秒前
圈地自萌X完成签到 ,获得积分10
15秒前
17秒前
小饼一定要上岸完成签到,获得积分10
17秒前
GT完成签到,获得积分10
18秒前
18秒前
七七完成签到 ,获得积分10
18秒前
Jasmine完成签到 ,获得积分10
18秒前
只爱三十四画完成签到,获得积分10
18秒前
Kay76完成签到,获得积分10
20秒前
李狗蛋完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482726
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389653
捐赠科研通 4512735
什么是DOI,文献DOI怎么找? 2473199
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861