ACP-ML: A sequence-based method for anticancer peptide prediction

特征选择 特征(语言学) 计算机科学 癌症 机器学习 集成学习 模式识别(心理学) 人工智能 医学 语言学 内科学 哲学
作者
Jilong Bian,Xuan Liu,Guanghui Dong,Hou Chang,Shan Huang,Dandan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108063-108063 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108063
摘要

Cancer is a serious malignant tumor and is difficult to cure. Chemotherapy, as a primary treatment for cancer, causes significant harm to normal cells in the body and is often accompanied by serious side effects. Recently, anti-cancer peptides (ACPs) as a type of protein for treating cancers dominated research into the development of new anti-tumor drugs because of their ability to specifically target and destroy cancer cells. The screening of proteins with cancer-inhibiting properties from a large pool of proteins is key to the development of anti-tumor drugs. However, it is expensive and inefficient to accurately identify protein functions only through biological experiments due to their complex structure. Therefore, we propose a new prediction model ACP-ML to effectively predict ACPs. In terms of feature extraction, DPC, PseAAC, CTDC, CTDT and CS-Pse-PSSM features were used and the most optimal feature set was selected by comparing combinations of these features. Then, a two-step feature selection process using MRMD and RFE algorithms was performed to determine the most crucial features from the most optimal feature set for identifying ACPs. Furthermore, we assessed the classification accuracy of single learning models and different strategies-based ensemble models through ten-fold cross-validation. Ultimately, a voting-based ensemble learning method is developed to predict ACPs. To validate its effectiveness, two independent test sets were used to perform tests, achieving accuracy of 90.891 % and 92.578 % respectively. Compared with existing anticancer peptide prediction algorithms, the proposed feature processing method is more effective, and the proposed ensemble model ACP-ML exhibits stronger generalization capability and higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃飞薇关注了科研通微信公众号
1秒前
1秒前
彼岸发布了新的文献求助10
2秒前
科研通AI5应助wxyaaa采纳,获得10
2秒前
asymmetric糖发布了新的文献求助10
2秒前
温暖的幻竹完成签到 ,获得积分10
2秒前
study完成签到,获得积分0
3秒前
3秒前
4秒前
胖川完成签到,获得积分10
4秒前
情怀应助咔酱采纳,获得10
4秒前
5秒前
zz发布了新的文献求助10
5秒前
假期会发芽完成签到 ,获得积分10
5秒前
今后应助谢陈采纳,获得10
6秒前
天真书南完成签到,获得积分10
6秒前
张涛发布了新的文献求助10
6秒前
橙子发布了新的文献求助10
6秒前
温暖的幻竹关注了科研通微信公众号
7秒前
liulu完成签到 ,获得积分10
7秒前
小马甲应助迷人耗子精采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
爱学习的猫完成签到,获得积分10
8秒前
cdercder应助科研通管家采纳,获得10
8秒前
cdercder应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
yangmoo发布了新的文献求助10
9秒前
侧耳倾听发布了新的文献求助10
10秒前
10秒前
cc完成签到,获得积分10
10秒前
10秒前
10秒前
无花果应助qqa采纳,获得10
11秒前
spujo应助思之若琴采纳,获得10
12秒前
12秒前
JamesPei应助躺平摆烂采纳,获得10
12秒前
13秒前
酸奶巧克力完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621