ACP-ML: A sequence-based method for anticancer peptide prediction

特征选择 特征(语言学) 计算机科学 癌症 机器学习 集成学习 模式识别(心理学) 人工智能 医学 语言学 内科学 哲学
作者
Jilong Bian,Xuan Liu,Guanghui Dong,Hou Chang,Shan Huang,Dandan Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108063-108063 被引量:13
标识
DOI:10.1016/j.compbiomed.2024.108063
摘要

Cancer is a serious malignant tumor and is difficult to cure. Chemotherapy, as a primary treatment for cancer, causes significant harm to normal cells in the body and is often accompanied by serious side effects. Recently, anti-cancer peptides (ACPs) as a type of protein for treating cancers dominated research into the development of new anti-tumor drugs because of their ability to specifically target and destroy cancer cells. The screening of proteins with cancer-inhibiting properties from a large pool of proteins is key to the development of anti-tumor drugs. However, it is expensive and inefficient to accurately identify protein functions only through biological experiments due to their complex structure. Therefore, we propose a new prediction model ACP-ML to effectively predict ACPs. In terms of feature extraction, DPC, PseAAC, CTDC, CTDT and CS-Pse-PSSM features were used and the most optimal feature set was selected by comparing combinations of these features. Then, a two-step feature selection process using MRMD and RFE algorithms was performed to determine the most crucial features from the most optimal feature set for identifying ACPs. Furthermore, we assessed the classification accuracy of single learning models and different strategies-based ensemble models through ten-fold cross-validation. Ultimately, a voting-based ensemble learning method is developed to predict ACPs. To validate its effectiveness, two independent test sets were used to perform tests, achieving accuracy of 90.891 % and 92.578 % respectively. Compared with existing anticancer peptide prediction algorithms, the proposed feature processing method is more effective, and the proposed ensemble model ACP-ML exhibits stronger generalization capability and higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的冰旋完成签到,获得积分10
1秒前
研友_GZ3zRn完成签到 ,获得积分0
3秒前
款款完成签到,获得积分10
3秒前
qz完成签到,获得积分10
3秒前
七里香完成签到 ,获得积分10
4秒前
易只羊完成签到,获得积分10
4秒前
kevin完成签到,获得积分10
4秒前
Fury完成签到 ,获得积分10
7秒前
1l完成签到,获得积分10
8秒前
直率的饼干完成签到,获得积分10
8秒前
开放剑鬼完成签到,获得积分10
8秒前
阿泡阿茶和阿壶完成签到,获得积分10
11秒前
ccmxigua完成签到,获得积分10
11秒前
12秒前
易止完成签到 ,获得积分10
12秒前
Sofia完成签到,获得积分10
15秒前
xixihaha完成签到,获得积分10
15秒前
吴家豪完成签到,获得积分10
16秒前
18秒前
推土机爱学习完成签到 ,获得积分10
21秒前
推土机爱学习完成签到 ,获得积分10
21秒前
天真酒窝完成签到,获得积分10
22秒前
阳佟念真完成签到,获得积分0
23秒前
orixero应助彭伟盼采纳,获得10
24秒前
韩星发布了新的文献求助10
24秒前
cllg完成签到,获得积分10
25秒前
虚心的冷雪完成签到,获得积分10
25秒前
28秒前
hff完成签到 ,获得积分10
31秒前
32秒前
Aintzane完成签到 ,获得积分10
32秒前
sun完成签到 ,获得积分10
35秒前
jackhlj完成签到,获得积分10
37秒前
彭伟盼发布了新的文献求助10
38秒前
kiyo_v完成签到,获得积分10
40秒前
ran完成签到 ,获得积分10
40秒前
41秒前
yeape完成签到,获得积分10
41秒前
天玄完成签到 ,获得积分10
42秒前
john完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807219
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753279
捐赠科研通 3856850
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145522
关于科研通互助平台的介绍 1038074