AutoDDI: Drug–Drug Interaction Prediction With Automated Graph Neural Network

计算机科学 药品 图形 机器学习 人工智能 人工神经网络 药物与药物的相互作用 图论 数据挖掘 理论计算机科学 医学 药理学 数学 组合数学
作者
Jianliang Gao,Zhenpeng Wu,Raeed Al-Sabri,Babatoundé Moctard Olouladé,Jiamin Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1773-1784 被引量:22
标识
DOI:10.1109/jbhi.2024.3349570
摘要

Drug-drug interaction (DDI) has attracted widespread attention because when incompatible drugs are taken together, DDI will lead to adverse effects on the body, such as drug poisoning or reduced drug efficacy. The adverse effects of DDI are closely determined by the molecular structures of the drugs involved. To represent drug data effectively, researchers usually treat the molecular structure of drugs as a molecule graph. Then, previous studies can use the handcrafted graph neural network (GNN) model to learn the molecular graph representations of drugs for DDI prediction. However, in the field of bioinformatics, manually designing GNN architectures for specific molecular structure datasets is time-consuming and depends on expert experience. To address this problem, we propose an automatic drug-drug interaction prediction method named AutoDDI that can efficiently and automatically design the GNN architecture for drug-drug interaction prediction without manual intervention. To this end, we first design an effective search space for drug-drug interaction prediction by revisiting various handcrafted GNN architectures. Then, to efficiently and automatically design the optimal GNN architecture for each drug dataset from the search space, a reinforcement learning search algorithm is adopted. The experiment results show that AutoDDI can achieve the best performance on two real-world datasets. Moreover, the visual interpretation results of the case study show that AutoDDI can effectively capture drug substructure for drug-drug interaction prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xingci发布了新的文献求助10
刚刚
万能图书馆应助陈陈采纳,获得10
刚刚
1秒前
鹿小娇完成签到,获得积分10
1秒前
1秒前
小橘子2022完成签到,获得积分10
1秒前
打打应助feihu采纳,获得10
1秒前
h哈发布了新的文献求助10
2秒前
煎饼果子发布了新的文献求助10
2秒前
叶子宁发布了新的文献求助10
3秒前
heyheybaby发布了新的文献求助10
4秒前
6秒前
搜集达人应助杜儒采纳,获得10
6秒前
7秒前
大模型应助晃悠悠的可乐采纳,获得10
9秒前
12秒前
feihu发布了新的文献求助10
12秒前
13秒前
14秒前
ccccc完成签到,获得积分10
14秒前
GQ完成签到,获得积分10
14秒前
快乐藤椒堡完成签到 ,获得积分10
15秒前
张靖松发布了新的文献求助10
16秒前
cxy发布了新的文献求助10
17秒前
谦让的雪枫完成签到 ,获得积分10
18秒前
NexusExplorer应助heyheybaby采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
18秒前
CAOHOU应助科研通管家采纳,获得10
18秒前
19秒前
Xhhaai应助科研通管家采纳,获得10
19秒前
19秒前
Hello应助科研通管家采纳,获得10
19秒前
19秒前
情怀应助科研通管家采纳,获得10
19秒前
19秒前
天天快乐应助h哈采纳,获得10
19秒前
Hilda007应助科研通管家采纳,获得10
19秒前
20秒前
Xhhaai应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5794177
求助须知:如何正确求助?哪些是违规求助? 5753279
关于积分的说明 15488046
捐赠科研通 4920965
什么是DOI,文献DOI怎么找? 2649189
邀请新用户注册赠送积分活动 1596498
关于科研通互助平台的介绍 1550988