Flow fields prediction for data-driven model of parallel twin cylinders based on POD-RBFNN and POD-BPNN surrogate models

交货地点 替代模型 计算流体力学 替代数据 快照(计算机存储) 数学 本征正交分解 人工神经网络 计算机科学 算法 数学优化 人工智能 机械 物理 生物 非线性系统 操作系统 量子力学 农学
作者
Guangyun Min,Naibin Jiang
出处
期刊:Annals of Nuclear Energy [Elsevier BV]
卷期号:199: 110342-110342 被引量:15
标识
DOI:10.1016/j.anucene.2024.110342
摘要

Flow around cylinders is an important phenomenon in many different engineering fields. In this paper, the fast prediction of the pressure fields of parallel twin cylinders is implemented based on a data-driven algorithm. Firstly, the pressure fields of parallel twin cylinders with a low Reynolds number are obtained through the Computational Fluid Dynamics (CFD) method. The pressure fields at different time steps are collected to form a snapshot matrix. The Proper Orthogonal Decomposition (POD) algorithm is then applied to obtain the POD basis vectors of the snapshot matrix, enabling the reconstruing the pressure fields. Subsequently, two reduced-order models (ROM) called the POD-RBFNN and POD-BPNN surrogate models are proposed in this paper. The POD-RBFNN surrogate model uses the Radial Basis Function Neural Network (RBFNN) to train the POD mode coefficients obtained from the POD algorithm, while the POD-BPNN surrogate model uses the Backpropagation Neural Network (BPNN) for the same purpose. Linearly combining the POD mode coefficients predicted by the POD-RBFNN or POD-BPNN surrogate models with the POD basis vectors obtained from the POD algorithm enables fast and efficient prediction of pressure fields for non-sample points. Finally, comparisons are made between the predicted pressure fields obtained from these two surrogate models and the actual values obtained through CFD simulations. It is found that both the POD-RBFNN and POD-BPNN surrogate models proposed in this paper not only significantly improve efficiency but also maintain a high level of accuracy. However, the training time of the POD-RBFNN surrogate model is significantly shorter than that of the POD-BPNN surrogate model. Additionally, the POD-RBFNN surrogate model exhibits smaller Root Mean Square Errors (RMSE) and Mean Absolute Error (MAE). For the data-driven model of parallel twin cylinders described in this paper, the POD-RBFNN surrogate model is more suitable to predict the pressure fields. The research results in this paper are believed to hold significant value for CFD calculations of parallel twin cylinder models, offering essential guidance for a deeper understanding of cylinder flow problems and optimizing engineering design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感念关注了科研通微信公众号
1秒前
2秒前
爆米花应助乐观小之采纳,获得10
4秒前
5秒前
科研通AI5应助无心的寄柔采纳,获得10
7秒前
shuiyu发布了新的文献求助10
7秒前
9秒前
Noel应助萨尔莫斯采纳,获得10
9秒前
乔心发布了新的文献求助10
10秒前
10秒前
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
阿浮完成签到,获得积分10
14秒前
hahaha完成签到,获得积分10
14秒前
15秒前
卓Celina完成签到,获得积分10
15秒前
驿寄梅花发布了新的文献求助10
16秒前
阿浮发布了新的文献求助10
17秒前
天天快乐应助CYY采纳,获得10
20秒前
念辞发布了新的文献求助10
20秒前
HEIKU应助Misea采纳,获得10
22秒前
任性雪糕完成签到 ,获得积分10
22秒前
852应助萨尔莫斯采纳,获得10
23秒前
共享精神应助狡猾肥鲶鱼采纳,获得30
23秒前
情怀应助净净子采纳,获得10
25秒前
魏你大爷完成签到 ,获得积分10
26秒前
丁丁完成签到,获得积分10
26秒前
在水一方应助平淡紫夏采纳,获得10
26秒前
我是老大应助驿寄梅花采纳,获得10
28秒前
缓慢的灵枫完成签到,获得积分10
32秒前
35秒前
驿寄梅花完成签到,获得积分10
40秒前
41秒前
42秒前
42秒前
柠檬精翠翠完成签到 ,获得积分10
45秒前
段段发布了新的文献求助10
47秒前
yuaaaann发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648