Differential Characteristics of Fatigue–Pain–Sleep Disturbance–Depression Symptom Cluster and Influencing Factors of Patients With Advanced Cancer During Treatment

医学 萧条(经济学) 睡眠障碍 生活质量(医疗保健) 物理疗法 潜在类模型 逻辑回归 人口 横断面研究 失眠症 内科学 精神科 统计 护理部 数学 环境卫生 病理 经济 宏观经济学
作者
Yanxin Ye,Kai Zeng,Qin Lan,Jiahui Luo,Suting Liu,Jingxia Miao,Jingwen Liang,Ya Yu,Ming Zhao,Lili Zhang
出处
期刊:Cancer Nursing [Lippincott Williams & Wilkins]
被引量:2
标识
DOI:10.1097/ncc.0000000000001316
摘要

Background Patients with advanced cancer may experience symptom clusters during treatment (eg, fatigue, pain, sleep disturbance, depression). Understanding the characteristics and factors associated with symptom cluster classes among this patient population is essential for effective symptom management. Objective The aims of this study were to identify symptom cluster (fatigue–pain–sleep disturbance–depression) classes and explore influencing factors in patients with advanced cancer during the treatment. Methods A cross-sectional survey was conducted in an oncology department of a tertiary hospital in China from September 2020 to March 2021. Cancer patients (stage III/IV) 18 years or older completed the questionnaires on pain, fatigue, sleep disturbance, depression, physical activity, and exercise self-efficacy. Latent class analysis and multinomial logistic regression were used. Results Three hundred sixty-five patients who were male (65.2%) and younger than 60 years (59.5%) completed questionnaires. Three symptom cluster classes were identified: class 1 (“low symptom burden” class), class 2 (“fatigue-insomnia” class), and class 3 (“high symptom burden” class), with a percentage of 54.5%, 38.6%, and 6.8%, respectively. The quality-of-life score, introversion/extroversion, economic burden, Karnofsky Performance Status, albumin level, and exercise self-efficacy were significantly different among the 3 classes ( P < .05). Conclusion Patients with advanced cancer were classified into 3 distinct classes, with class 1 having the best function. Results from this study reveal that Karnofsky Performance Status, albumin level, and exercise self-efficacy were significant factors for the latent classes of symptom cluster. Implications for Practice Exercise self-efficacy is important for personalized interventions and improving symptom management efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助KL1N采纳,获得10
刚刚
翟大有完成签到 ,获得积分0
刚刚
1101592875应助孔雀翎采纳,获得10
刚刚
1秒前
GTRK完成签到 ,获得积分10
3秒前
5秒前
6秒前
6秒前
zimo完成签到,获得积分10
6秒前
......发布了新的文献求助30
8秒前
满眼星辰发布了新的文献求助10
9秒前
Ari_Kun完成签到 ,获得积分10
10秒前
zimo发布了新的文献求助10
10秒前
11秒前
lyt完成签到,获得积分10
11秒前
11秒前
12秒前
朱可芯发布了新的文献求助10
13秒前
wonderful完成签到,获得积分10
14秒前
14秒前
win完成签到 ,获得积分10
15秒前
15秒前
16秒前
雷yg发布了新的文献求助10
16秒前
香蕉觅云应助zimo采纳,获得10
17秒前
17秒前
朱可芯完成签到,获得积分10
19秒前
狂野世立发布了新的文献求助10
19秒前
XQQDD完成签到,获得积分10
19秒前
元谷雪发布了新的文献求助30
20秒前
岁月如歌完成签到,获得积分20
21秒前
岁月如歌发布了新的文献求助10
23秒前
25秒前
优克莉伍德完成签到,获得积分20
26秒前
26秒前
秋寒完成签到,获得积分20
26秒前
田様应助naturehome采纳,获得10
28秒前
zhouleiwang完成签到,获得积分10
28秒前
雷yg完成签到,获得积分10
30秒前
vic发布了新的文献求助10
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307