Real-time Fusion of Multi-Source Monitoring Data with Geotechnical Numerical Model Results using Data-driven and Physics-informed Sparse Dictionary Learning

岩土工程 传感器融合 计算机科学 地质学 数据挖掘 数据科学 机器学习
作者
Hua-Ming Tian,Yu Wang,Kok‐Kwang Phoon
出处
期刊:Canadian Geotechnical Journal [NRC Research Press]
卷期号:61 (11): 2535-2552 被引量:6
标识
DOI:10.1139/cgj-2023-0457
摘要

Development of digital twins is emerging rapidly in geotechnical engineering, and it often requires real-time updating of numerical models (e.g., finite element model) using multiple sources of monitoring data (e.g., settlement and pore water pressure data). Conventional model updating, or calibration, often involves repeated executions of the numerical model, using monitoring data from a specific source or at limited spatial locations only. This leads to a critical research need of real-time model updating and predictions using a numerical model improved continuously by multi-source monitoring data. To address this need, a physics-informed machine learning method called multi-source sparse dictionary learning (MS-SDL) is proposed in this study. Originated from signal decomposition and compression, MS-SDL utilizes results from a suite of numerical models as basis functions, or dictionary atoms, and employs multi-source monitoring data to select a limited number of important atoms for predicting multiple, spatiotemporally varying geotechnical responses. As monitoring data are collected sequentially, no repeated evaluations of computational numerical models are needed, and an automatic and real-time model calibration is achieved for continuously improving model predictions. A real project in Hong Kong is presented to illustrate the proposed approach. Effect of monitoring data from different sources is also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助carly采纳,获得10
刚刚
fd163c应助Ashui采纳,获得10
1秒前
乐乐应助陈艳林采纳,获得10
1秒前
科研通AI5应助超级雨安采纳,获得10
2秒前
大佬发布了新的文献求助10
3秒前
等待惜文发布了新的文献求助10
3秒前
花花完成签到 ,获得积分10
3秒前
善学以致用应助陌路孤星采纳,获得10
4秒前
大白完成签到 ,获得积分10
4秒前
5秒前
爆米花应助炙热的灵薇采纳,获得10
6秒前
Aaron完成签到,获得积分10
6秒前
fox完成签到 ,获得积分10
7秒前
8秒前
www完成签到,获得积分10
8秒前
8秒前
JamesPei应助拉长的问凝采纳,获得10
9秒前
科研通AI2S应助吕小布12采纳,获得20
9秒前
brittany完成签到,获得积分10
10秒前
赘婿应助瀚泛采纳,获得10
11秒前
落寞丹烟完成签到 ,获得积分10
11秒前
无花果应助ZYQ采纳,获得10
11秒前
12秒前
故酒应助科研小辣机采纳,获得10
12秒前
12秒前
在水一方应助yazhang采纳,获得10
12秒前
12秒前
12秒前
赘婿应助结实的芷文采纳,获得30
13秒前
迅速凡旋发布了新的文献求助10
13秒前
云无意完成签到,获得积分10
13秒前
mm完成签到 ,获得积分10
13秒前
13秒前
brittany发布了新的文献求助10
14秒前
15秒前
15秒前
zgzz完成签到 ,获得积分10
15秒前
iNk应助科研通管家采纳,获得20
15秒前
15秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304