Resolving engineering challenges: Deep learning in frequency domain for 3D inverse identification of heterogeneous composite properties

稳健性(进化) 离散余弦变换 计算机科学 反问题 子空间拓扑 频域 算法 噪音(视频) 反向 机器学习 人工智能 数学 计算机视觉 生物化学 化学 图像(数学) 基因 数学分析 几何学
作者
Yizhe Liu,Yue Mei,Yuli Chen,Bin Ding
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:276: 111353-111353 被引量:7
标识
DOI:10.1016/j.compositesb.2024.111353
摘要

The inverse identification of heterogeneous composite properties from measured displacement/strain fields is pivotal in engineering. Traditional methodologies and emerging machine learning techniques both confront two major challenges. The first challenge involves achieving rapid identification while maintaining robustness to noise or pollution, and the second pertains to applicability in resolving complex three-dimensional (3D) engineering problems. To address these issues, a novel deep learning in frequency domain method (DLfd) for 3D inverse identification is proposed. Utilizing 3D-discrete cosine transform (3D-DCT), this method reduces input dimension by 98.24%, thereby simplifying the 3D problem to a computationally manageable form. A subsequent U-Net model establishes high-precision mappings between the reduced 3D-DCT coefficients of strain fields and modulus field, and the L1-error for the predicted modulus field is remarkably low at 2.431%. Even facing large noise (5% level) interference, the L1-error increases only 0.1%, demonstrating the robustness of the method. Coupled with Bayesian optimization, DLfd can generate accurate predictions even with incomplete measurements, and has been validated through several case studies involving measured fields missing in various shapes and locations. The method demonstrates general applicability to both 2D and 3D scenarios, and effectively mitigates the challenges posed by noise and data pollution, bringing it a step closer to practical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gzdaigzn完成签到,获得积分10
刚刚
1秒前
一只科研狗完成签到,获得积分10
1秒前
偷乐完成签到,获得积分10
2秒前
3秒前
lisyan发布了新的文献求助10
3秒前
科研通AI2S应助liuxh123采纳,获得10
4秒前
yanny发布了新的文献求助10
4秒前
北落发布了新的文献求助30
5秒前
5秒前
CipherSage应助舒物采纳,获得10
5秒前
6秒前
6秒前
接点私活发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
优美酸奶完成签到,获得积分10
9秒前
傲娇的曼香完成签到,获得积分10
9秒前
今后应助时尚叫兽采纳,获得10
10秒前
无心的香完成签到,获得积分20
10秒前
10秒前
蓦回发布了新的文献求助10
12秒前
无心的香发布了新的文献求助10
12秒前
优美酸奶发布了新的文献求助10
12秒前
Jiayi发布了新的文献求助10
13秒前
科目三应助倪笙继采纳,获得10
13秒前
Akim应助Atlantic采纳,获得10
13秒前
14秒前
刻苦雪萍发布了新的文献求助10
15秒前
向阳花小朵完成签到,获得积分10
15秒前
星辰大海应助左秋白采纳,获得10
16秒前
Di完成签到 ,获得积分10
16秒前
16秒前
接点私活完成签到,获得积分10
17秒前
汉堡包应助lisyan采纳,获得10
17秒前
GJY发布了新的文献求助10
17秒前
17秒前
咕咚咕咚发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841