Micropollutant rejection by nanofiltration membranes: A mini review dedicated to the critical factors and modelling prediction

纳滤 Zeta电位 背景(考古学) 化学 均方误差 统计 数学 化学工程 工程类 生物化学 生物 古生物学 纳米颗粒
作者
Rui Xu,Zeqian Zhang,Chenning Deng,Chong Nie,Lijing Wang,Wenqing Shi,Tao Lyu,Queping Yang
出处
期刊:Environmental Research [Elsevier]
卷期号:244: 117935-117935 被引量:8
标识
DOI:10.1016/j.envres.2023.117935
摘要

Nanofiltration (NF) membranes, extensively used in advanced wastewater treatment, have broad application prospects for the removal of emerging trace organic micropollutants (MPs). The treatment performance is affected by several factors, such as the properties of NF membranes, characteristics of target MPs, and operating conditions of the NF system concerning MP rejection. However, quantitative studies on different contributors in this context are limited. To fill the knowledge gap, this study aims to assess critical impact factors controlling MP rejection and develop a feasible model for MP removal prediction. The mini-review firstly summarized membrane pore size, membrane zeta potential, and the normalized molecular size (λ = rs/rp), showeing better individual relationships with MP rejection by NF membranes. The Lindeman-Merenda-Gold model was used to quantitatively assess the relative importance of all summarized impact factors. The results showed that membrane pore size and operating pressure were the high impact factors with the highest relative contribution rates to MP rejection of 32.11% and 25.57%, respectively. Moderate impact factors included membrane zeta potential, solution pH, and molecular radius with relative contribution rates of 10.15%, 8.17%, and 7.83%, respectively. The remaining low impact factors, including MP charge, molecular weight, logKow, pKa and crossflow rate, comprised all the remaining contribution rates of 16.19% through the model calculation. Furthermore, based on the results and data availabilities from references, the machine learning-based random forest regression model was trained with a relatively low root mean squared error and mean absolute error of 12.22% and 6.92%, respectively. The developed model was then successfully applied to predict MPs' rejections by NF membranes. These findings provide valuable insights that can be applied in the future to optimize NF membrane designs, operation, and prediction in terms of removing micropollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助一一采纳,获得10
刚刚
执着跳跳糖完成签到 ,获得积分10
1秒前
阳yang完成签到,获得积分10
1秒前
牛头人完成签到,获得积分10
1秒前
2秒前
Rrr发布了新的文献求助10
2秒前
3秒前
3秒前
serenity完成签到 ,获得积分10
3秒前
Benliu完成签到,获得积分10
3秒前
csq发布了新的文献求助10
4秒前
5秒前
Hello应助外向的醉易采纳,获得10
5秒前
DWWWDAADAD完成签到,获得积分10
8秒前
科研通AI5应助一天八杯水采纳,获得10
9秒前
杨大仙儿完成签到 ,获得积分10
9秒前
11秒前
坚强的广山应助木头人采纳,获得200
11秒前
嘻哈学习完成签到,获得积分10
11秒前
11秒前
11秒前
ying完成签到,获得积分10
12秒前
12秒前
虚幻白玉完成签到,获得积分10
13秒前
安静的孤萍完成签到,获得积分10
14秒前
14秒前
lyz666发布了新的文献求助10
14秒前
liuxl发布了新的文献求助10
15秒前
smile完成签到,获得积分20
16秒前
Shuo Yang完成签到,获得积分10
16秒前
16秒前
伊酒发布了新的文献求助10
16秒前
蓉儿完成签到 ,获得积分10
17秒前
动人的梦之完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
19秒前
小小爱吃百香果完成签到,获得积分20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808