Micropollutant rejection by nanofiltration membranes: A mini review dedicated to the critical factors and modelling prediction

纳滤 Zeta电位 背景(考古学) 化学 均方误差 统计 数学 化学工程 工程类 生物化学 古生物学 纳米颗粒 生物
作者
Rui Xu,Zeqian Zhang,Chenning Deng,Chong Nie,Lijing Wang,Wenqing Shi,Tao Lyu,Queping Yang
出处
期刊:Environmental Research [Elsevier]
卷期号:244: 117935-117935
标识
DOI:10.1016/j.envres.2023.117935
摘要

Nanofiltration (NF) membranes, extensively used in advanced wastewater treatment, have broad application prospects for the removal of emerging trace organic micropollutants (MPs). The treatment performance is affected by several factors, such as the properties of NF membranes, characteristics of target MPs, and operating conditions of the NF system concerning MP rejection. However, quantitative studies on different contributors in this context are limited. To fill the knowledge gap, this study aims to assess critical impact factors controlling MP rejection and develop a feasible model for MP removal prediction. The mini-review firstly summarized membrane pore size, membrane zeta potential, and the normalized molecular size (λ = rs/rp), showeing better individual relationships with MP rejection by NF membranes. The Lindeman-Merenda-Gold model was used to quantitatively assess the relative importance of all summarized impact factors. The results showed that membrane pore size and operating pressure were the high impact factors with the highest relative contribution rates to MP rejection of 32.11% and 25.57%, respectively. Moderate impact factors included membrane zeta potential, solution pH, and molecular radius with relative contribution rates of 10.15%, 8.17%, and 7.83%, respectively. The remaining low impact factors, including MP charge, molecular weight, logKow, pKa and crossflow rate, comprised all the remaining contribution rates of 16.19% through the model calculation. Furthermore, based on the results and data availabilities from references, the machine learning-based random forest regression model was trained with a relatively low root mean squared error and mean absolute error of 12.22% and 6.92%, respectively. The developed model was then successfully applied to predict MPs’ rejections by NF membranes. These findings provide valuable insights that can be applied in the future to optimize NF membrane designs, operation, and prediction in terms of removing micropollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的安想完成签到,获得积分10
刚刚
大模型应助的的采纳,获得10
刚刚
1秒前
我是糕手完成签到,获得积分10
1秒前
suda完成签到,获得积分10
1秒前
CC完成签到,获得积分10
2秒前
小马哥西北孤狼完成签到,获得积分10
3秒前
张青见完成签到,获得积分10
3秒前
雨晴完成签到,获得积分10
4秒前
闫素肃完成签到,获得积分10
4秒前
违规昵称完成签到,获得积分10
5秒前
5秒前
乐乐发布了新的文献求助10
5秒前
5秒前
神经娃完成签到,获得积分10
5秒前
汉堡包应助Singularity采纳,获得10
6秒前
abc1122完成签到,获得积分10
7秒前
你好啊完成签到,获得积分10
7秒前
whatever举报求助违规成功
7秒前
JHGG举报求助违规成功
7秒前
Yziii举报求助违规成功
7秒前
7秒前
8秒前
LXX-k完成签到,获得积分10
8秒前
xiaomaidou完成签到,获得积分20
9秒前
开心蛋挞完成签到,获得积分10
9秒前
糊涂的元珊完成签到 ,获得积分10
10秒前
完美世界应助苏落白的白采纳,获得10
10秒前
Mely0203发布了新的文献求助10
11秒前
欣喜的香彤完成签到,获得积分10
12秒前
13秒前
xiaomaidou发布了新的文献求助10
13秒前
飞翔的蒲公英完成签到,获得积分10
13秒前
张筋健发布了新的文献求助10
13秒前
大力日记本完成签到,获得积分10
13秒前
14秒前
15秒前
小超人完成签到 ,获得积分10
16秒前
16秒前
16秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052709
求助须知:如何正确求助?哪些是违规求助? 2710016
关于积分的说明 7418933
捐赠科研通 2354601
什么是DOI,文献DOI怎么找? 1246197
科研通“疑难数据库(出版商)”最低求助积分说明 605964
版权声明 595943