Accelerating redox kinetics of sulfurized polyacrylonitrile nanosheets by trace doping of element

聚丙烯腈 动力学 氧化还原 跟踪(心理语言学) 微量元素 兴奋剂 材料科学 化学工程 化学 无机化学 冶金 复合材料 工程类 聚合物 哲学 物理 量子力学 光电子学 语言学
作者
Ke Wang,Teng Zhao,Kun Wang,Tianyang Yu,Guoshuai Chen,Wei Tang,Li Li,Feng Wu,Renjie Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:: 150300-150300
标识
DOI:10.1016/j.cej.2024.150300
摘要

"Solid-solid" conversion mechanism of sulfurized polyacrylonitrile (SPAN) could eliminate the "shuttle effect" of polysulfides intermediate in LiS batteries, but it leads to poor redox reaction kinetics. Herein, traces of high conductivity elements Se and Te are doped in two-dimensional SPAN nanosheets (NS) by co-heating method. This synergistic effect enhances the conductivity of SPAN while affording a larger contact area with the electrolyte and shortening the electron/ion transport path. As a result, both the energy barrier for redox reaction and polarization for battery are decreased. At a high current density of 3 A g−1, Te0.052S0.948PAN NS and Se0.071S0.929PAN NS exhibit significantly enhanced discharge capacities of 485 mA h g−1composite and 457 mA h g−1composite, respectively, while SPAN NP only delivers a capacity of 417 mA h g−1composite. At 0.2 A g−1 current density, the capacity retention rates of Te0.052S0.948PAN NS and Se0.071S0.929PAN NS are 92.20 % and 56.10 % after 200 cycles, respectively, both higher than the 40.10 % of SPAN nanoparticles (NP). When the loading amount is further increased, Te0.052S0.948PAN NS and Se0.071S0.929PAN NS still maintain excellent electrochemical performance. In-situ Raman and XPS analysis confirms the reversible breaking and formation of CS/SS bonds during the first cycle. Additionally, XPS and SEM analysis after 100 cycles demonstrate the stable nanostructure and molecular structure of Se0.071S0.929PAN NS and Te0.052S0.948PAN NS throughout the cycling process. These results herald a new approach to high redox kinetics of SPAN by the synergistic effect of elements doping and nanoscale modulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhongyao发布了新的文献求助10
6秒前
wk990240应助文123采纳,获得20
7秒前
12秒前
12秒前
15秒前
keroro发布了新的文献求助10
17秒前
MMM关闭了MMM文献求助
20秒前
彩色冥幽发布了新的文献求助10
22秒前
飞飞飞发布了新的文献求助10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
23秒前
爆米花应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
fool完成签到 ,获得积分10
24秒前
26秒前
向日葵发布了新的文献求助10
31秒前
田様应助首席或雪月采纳,获得10
32秒前
不忘初心发布了新的文献求助10
33秒前
Emma完成签到 ,获得积分10
36秒前
MMM完成签到,获得积分20
38秒前
43秒前
kaige发布了新的文献求助10
45秒前
不忘初心完成签到,获得积分10
47秒前
星辰大海应助咚咚咚采纳,获得10
50秒前
阿吐完成签到 ,获得积分10
52秒前
天天快乐应助向日葵采纳,获得10
54秒前
执着妙梦完成签到 ,获得积分10
54秒前
54秒前
56秒前
ummmmm发布了新的文献求助10
1分钟前
完美世界应助zzz采纳,获得10
1分钟前
Jin完成签到,获得积分10
1分钟前
Ava应助汉化采纳,获得10
1分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2394005
求助须知:如何正确求助?哪些是违规求助? 2097845
关于积分的说明 5286180
捐赠科研通 1825362
什么是DOI,文献DOI怎么找? 910154
版权声明 559943
科研通“疑难数据库(出版商)”最低求助积分说明 486433