GSL-DTI: Graph structure learning network for Drug-Target interaction prediction

药物发现 构造(python库) 计算机科学 药物靶点 人工智能 机器学习 图形 生物 理论计算机科学 生物信息学 化学 生物化学 程序设计语言
作者
E Zixuan,Guanyu Qiao,Guohua Wang,Yang Li
出处
期刊:Methods [Elsevier BV]
卷期号:223: 136-145 被引量:6
标识
DOI:10.1016/j.ymeth.2024.01.018
摘要

Motivation: Drug-target interaction prediction is an important area of research to predict whether there is an interaction between a drug molecule and its target protein. It plays a critical role in drug discovery and development by facilitating the identification of potential drug candidates and expediting the overall process. Given the time-consuming, expensive, and high-risk nature of traditional drug discovery methods, the prediction of drug-target interactions has become an indispensable tool. Using machine learning and deep learning to tackle this class of problems has become a mainstream approach, and graph-based models have recently received much attention in this field. However, many current graph-based Drug-Target Interaction (DTI) prediction methods rely on manually defined rules to construct the Drug-Protein Pair (DPP) network during the DPP representation learning process. However, these methods fail to capture the true underlying relationships between drug molecules and target proteins. We propose GSL-DTI, an automatic graph structure learning model used for predicting drug-target interactions (DTIs). Initially, we integrate large-scale heterogeneous networks using a graph convolution network based on meta-paths, effectively learning the representations of drugs and target proteins. Subsequently, we construct drug-protein pairs based on these representations. In contrast to previous studies that construct DPP networks based on manual rules, our method introduces an automatic graph structure learning approach. This approach utilizes a filter gate on the affinity scores of DPPs and relies on the classification loss of downstream tasks to guide the learning of the underlying DPP network structure. Based on the learned DPP network, we transform the prediction of drug-target interactions into a node classification problem. The comprehensive experiments conducted on three public datasets have shown the superiority of GSL-DTI in the tasks of DTI prediction. Additionally, GSL-DTI provides a fresh perspective for advancing research in graph structure learning for DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文子完成签到 ,获得积分10
1秒前
木木完成签到 ,获得积分10
2秒前
huangyao完成签到 ,获得积分10
4秒前
火星上仰完成签到,获得积分10
6秒前
6秒前
9秒前
开心的盛男完成签到 ,获得积分10
9秒前
小黑完成签到 ,获得积分10
9秒前
batmanrobin完成签到,获得积分10
9秒前
ajun完成签到,获得积分10
11秒前
葱油饼完成签到 ,获得积分10
12秒前
llg发布了新的文献求助10
13秒前
xfye发布了新的文献求助20
13秒前
llg完成签到,获得积分10
17秒前
21秒前
CC完成签到 ,获得积分10
22秒前
蔡勇强完成签到 ,获得积分10
22秒前
科研通AI2S应助负数采纳,获得10
25秒前
舒心靖琪完成签到 ,获得积分10
26秒前
Jupiter完成签到,获得积分10
26秒前
prim发布了新的文献求助10
27秒前
whitepiece完成签到,获得积分10
29秒前
太空工程师完成签到,获得积分10
30秒前
恒河鲤完成签到,获得积分10
35秒前
37秒前
plant完成签到 ,获得积分10
38秒前
pengyang完成签到 ,获得积分10
39秒前
39秒前
阿斯台德发布了新的文献求助10
41秒前
求知完成签到,获得积分10
43秒前
43秒前
什么也难不倒我完成签到 ,获得积分10
47秒前
迷路曼雁应助大成子采纳,获得20
51秒前
Wang发布了新的文献求助10
56秒前
MOMO完成签到 ,获得积分10
56秒前
杰_骜不驯完成签到,获得积分10
1分钟前
木棉完成签到,获得积分10
1分钟前
啊怪完成签到 ,获得积分10
1分钟前
阿萨德完成签到,获得积分10
1分钟前
SSSstriker完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776116
求助须知:如何正确求助?哪些是违规求助? 3321700
关于积分的说明 10206716
捐赠科研通 3036792
什么是DOI,文献DOI怎么找? 1666450
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841