T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas

医学 无线电技术 流体衰减反转恢复 接收机工作特性 曲线下面积 有效扩散系数 队列 放射科 磁共振成像 核医学 病理 内科学
作者
Wei Tang,Chun‐Qiu Su,Jiuann‐Huey Lin,Zhiwei Xia,Shanshan Lu,Xunning Hong
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (5): e750-e758 被引量:2
标识
DOI:10.1016/j.crad.2024.01.021
摘要

AIM To investigate the application of the T2-weighted (T2)-fluid-attenuated inversion recovery (FLAIR) mismatch sign and machine learning-based multiparametric magnetic resonance imaging (MRI) radiomics in predicting 1p/19q non-co-deletion of lower-grade gliomas (LGGs). MATERIALS AND METHODS One hundred and forty-six patients, who had pathologically confirmed isocitrate dehydrogenase (IDH) mutant LGGs were assigned randomly to the training cohort (n=102) and the testing cohort (n=44) at a ratio of 7:3. The T2-FLAIR mismatch sign and conventional MRI features were evaluated. Radiomics features extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), FLAIR, apparent diffusion coefficient (ADC), and contrast-enhanced T1WI images (CE-T1WI). The models that displayed the best performance of each sequence were selected, and their predicted values as well as the T2-FLAIR mismatch sign data were collected to establish a final stacking model. Receiver operating characteristic curve (ROC) analyses and area under the curve (AUC) values were applied to evaluate and compare the performance of the models. RESULTS The T2-FLAIR mismatch sign was more common in the IDH mutant 1p/19q non-co-deleted group (p<0.05) and the area under the curve (AUC) value was 0.692 with sensitivity 0.397, specificity 0.987, and accuracy 0.712, respectively. The stacking model showed a favourable performance with an AUC of 0.925 and accuracy of 0.882 in the training cohort and an AUC of 0.886 and accuracy of 0.864 in the testing cohort. CONCLUSION The stacking model based on multiparametric MRI can serve as a supplementary tool for pathological diagnosis, offering valuable guidance for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨杨发布了新的文献求助10
1秒前
可靠的南霜完成签到 ,获得积分10
2秒前
Jasper应助活泼的觅云采纳,获得10
3秒前
Brightan完成签到,获得积分10
5秒前
6秒前
深情安青应助yw采纳,获得10
6秒前
7秒前
领导范儿应助Bup采纳,获得10
9秒前
11秒前
忧郁的易烟完成签到 ,获得积分10
12秒前
WXR0721发布了新的文献求助10
13秒前
岁月静好Taoyi完成签到 ,获得积分10
14秒前
绿绿发布了新的文献求助10
16秒前
万灵竹完成签到 ,获得积分10
18秒前
科研通AI5应助活泼的觅云采纳,获得10
20秒前
科研通AI5应助qq采纳,获得30
23秒前
ei123完成签到,获得积分10
24秒前
ZL完成签到 ,获得积分10
25秒前
宁异勿同发布了新的文献求助10
25秒前
活泼的诗桃完成签到,获得积分10
27秒前
29秒前
绿绿完成签到,获得积分10
30秒前
小古完成签到,获得积分10
31秒前
yang完成签到,获得积分10
32秒前
所所应助活泼的觅云采纳,获得10
34秒前
huahua发布了新的文献求助10
34秒前
35秒前
35秒前
35秒前
HMONEY应助科研通管家采纳,获得10
37秒前
ding应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
在水一方应助科研通管家采纳,获得10
38秒前
所所应助科研通管家采纳,获得10
38秒前
HMONEY应助科研通管家采纳,获得10
38秒前
38秒前
ptalala完成签到,获得积分10
38秒前
dd完成签到,获得积分20
39秒前
红豆小猫发布了新的文献求助10
40秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445