Longitudinal Assessment of Multiple Sclerosis Lesion Load With Synthetic Magnetic Resonance Imaging—A Multicenter Validation Study

流体衰减反转恢复 减法 磁共振成像 多发性硬化 核医学 医学 放射科 病变 病理 数学 算术 精神科
作者
Sarah Schlaeger,Hongwei Li,Thomas Baum,Claus Zimmer,Julia Moosbauer,Sebastian Byas,Mark Mühlau,Benedikt Wiestler,Tom Finck
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:11
标识
DOI:10.1097/rli.0000000000000938
摘要

Introduction Double inversion recovery (DIR) has been validated as a sensitive magnetic resonance imaging (MRI) contrast in multiple sclerosis (MS). Deep learning techniques can use basic input data to generate synthetic DIR (synthDIR) images that are on par with their acquired counterparts. As assessment of longitudinal MRI data is paramount in MS diagnostics, our study's purpose is to evaluate the utility of synthDIR longitudinal subtraction imaging for detection of disease progression in a multicenter data set of MS patients. Methods We implemented a previously established generative adversarial network to synthesize DIR from input T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences for 214 MRI data sets from 74 patients and 5 different centers. One hundred and forty longitudinal subtraction maps of consecutive scans (follow-up scan—preceding scan) were generated for both acquired FLAIR and synthDIR. Two readers, blinded to the image origin, independently quantified newly formed lesions on the FLAIR and synthDIR subtraction maps, grouped into specific locations as outlined in the McDonald criteria. Results Both readers detected significantly more newly formed MS-specific lesions in the longitudinal subtractions of synthDIR compared with acquired FLAIR (R1: 3.27 ± 0.60 vs 2.50 ± 0.69 [ P = 0.0016]; R2: 3.31 ± 0.81 vs 2.53 ± 0.72 [ P < 0.0001]). Relative gains in detectability were most pronounced in juxtacortical lesions (36% relative gain in lesion counts—pooled for both readers). In 5% of the scans, synthDIR subtraction maps helped to identify a disease progression missed on FLAIR subtraction maps. Conclusions Generative adversarial networks can generate high-contrast DIR images that may improve the longitudinal follow-up assessment in MS patients compared with standard sequences. By detecting more newly formed MS lesions and increasing the rates of detected disease activity, our methodology promises to improve clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenge发布了新的文献求助10
2秒前
向响响完成签到,获得积分10
2秒前
qcwindchasing完成签到,获得积分10
2秒前
丘比特应助SHIKAMARU采纳,获得10
3秒前
胡思完成签到,获得积分10
3秒前
赘婿应助落寞凌波采纳,获得10
4秒前
5秒前
6秒前
7秒前
彭于晏完成签到,获得积分10
9秒前
10秒前
子衿发布了新的文献求助10
11秒前
wenge完成签到,获得积分20
12秒前
科目三应助细心的语蓉采纳,获得10
12秒前
呵呵嘿完成签到,获得积分20
13秒前
李爱国应助豚豚兔老公采纳,获得30
14秒前
red发布了新的文献求助10
15秒前
Revision完成签到,获得积分10
16秒前
16秒前
搜集达人应助武雨寒采纳,获得10
16秒前
科研通AI2S应助wenge采纳,获得10
17秒前
CC完成签到,获得积分10
18秒前
小七完成签到,获得积分10
18秒前
深年完成签到,获得积分10
18秒前
夏紫儿完成签到 ,获得积分10
19秒前
20秒前
ChaoLi197855完成签到,获得积分10
21秒前
Oval完成签到 ,获得积分10
22秒前
瘦瘦的迎南完成签到 ,获得积分10
22秒前
maomaotou发布了新的文献求助10
23秒前
red完成签到,获得积分10
23秒前
Serendipity应助科研通管家采纳,获得20
23秒前
柏林寒冬应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
Wind应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得50
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169200
求助须知:如何正确求助?哪些是违规求助? 3704460
关于积分的说明 11691166
捐赠科研通 3391329
什么是DOI,文献DOI怎么找? 1859943
邀请新用户注册赠送积分活动 920135
科研通“疑难数据库(出版商)”最低求助积分说明 832602