Deep Multilayer Perceptron Neural Network for the Prediction of Iranian Dam Project Delay Risks

人工神经网络 人工智能 多层感知器 深度学习 计算机科学 机器学习 预测建模 感知器 主成分分析 交叉验证 数据挖掘
作者
Danial Hosseini Shirazi,Hossein Toosi
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (4) 被引量:7
标识
DOI:10.1061/jcemd4.coeng-12367
摘要

Construction delays are among the industry's most significant challenges, especially in the infrastructure sector, where delays can have serious socio-economic consequences. Recently, advances in deep learning (DL) have opened up new possibilities for tackling complex issues more efficiently. This study aims to evaluate the potential of deep neural networks in predicting the level of delay in Iranian dam construction projects. As the first step, 65 delay risk factors were identified through a comprehensive literature review and interviews. Then risk scores for 53 completed dam projects in Iran were determined through a questionnaire survey. Subsequently, the most significant latent features were extracted using principal component analysis (PCA). The resultant variables were combined with two project characteristics to develop the input dataset. Finally, the resulting dataset was used to develop a deep multilayer perceptron neural network (MLP-NN) model to predict project delays. The prediction performance of the deep-MLP model was then evaluated and compared to that of the best delay prediction models found in previous studies. The three-times repeated stratified five-fold cross-validation results demonstrated that the proposed deep-NN model outperformed all previous approaches for delay prediction on all performance metrics. This study also explores the effectiveness of combining delay risk factors with project characteristics to train the predictive model. According to the results, adding project characteristic factors to the training dataset significantly improved the prediction performance of deep-MLP. The work presented here can assist managers of future dam constructions in the early stages of the project in selecting and prioritizing projects within a portfolio and allocating a sufficient buffer to ensure the project's timely completion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助rain采纳,获得10
刚刚
1秒前
浮游应助toking采纳,获得10
1秒前
Lu完成签到,获得积分20
1秒前
1秒前
1秒前
自觉紫安发布了新的文献求助10
1秒前
慕青应助山水之乐采纳,获得80
2秒前
DuFlank发布了新的文献求助10
2秒前
zzmmlll发布了新的文献求助10
2秒前
2秒前
4秒前
xww发布了新的文献求助10
4秒前
深情安青应助cardiology采纳,获得10
4秒前
科研通AI6应助sdniuidifod采纳,获得10
5秒前
5秒前
6秒前
xiaomaxia发布了新的文献求助10
6秒前
6秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
Lu发布了新的文献求助10
7秒前
8秒前
夏木发布了新的文献求助10
8秒前
8秒前
小熊吖完成签到 ,获得积分10
9秒前
阿波罗发布了新的文献求助10
9秒前
Ava应助张yang采纳,获得10
10秒前
11秒前
koi发布了新的文献求助10
11秒前
11秒前
兔子应助DuFlank采纳,获得30
11秒前
科研通AI2S应助toking采纳,获得10
12秒前
13秒前
顺利发布了新的文献求助20
13秒前
传奇3应助内秀采纳,获得10
13秒前
欣慰煎蛋发布了新的文献求助10
13秒前
13秒前
15秒前
LJ完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5332591
求助须知:如何正确求助?哪些是违规求助? 4471202
关于积分的说明 13916250
捐赠科研通 4364758
什么是DOI,文献DOI怎么找? 2397988
邀请新用户注册赠送积分活动 1391224
关于科研通互助平台的介绍 1361923